Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Defining type of a subset of natural numbers

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Defining type of a subset of natural numbers


chronological Thread 
  • From: Adam Chlipala <adam AT chlipala.net>
  • To: Nadeem Abdul Hamid <nadeem AT acm.org>
  • Cc: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Defining type of a subset of natural numbers
  • Date: Wed, 10 Feb 2010 11:31:23 -0500

Nadeem Abdul Hamid wrote:
Definition A := { n:nat | n < 10 }.

...

So the question is: Does anyone have other suggestions for defining concrete instantiations of A and B as finite subsets of the natural numbers, that would allow proof of the a_eq_dec property without introducing proof irrelevance?

This is the standard definition that I use:

Inductive fin : nat -> Type :=
  | FO : forall n, fin (S n)
  | FS : forall n, fin n -> fin (S n).




Archive powered by MhonArc 2.6.16.

Top of Page