coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Adam Koprowski <adam.koprowski AT gmail.com>
- To: Nadeem Abdul Hamid <nadeem AT acm.org>
- Cc: coq-club AT inria.fr
- Subject: Re: [Coq-Club] Defining type of a subset of natural numbers
- Date: Wed, 10 Feb 2010 17:49:41 +0100
- Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:in-reply-to:references:from:date:message-id:subject:to :cc:content-type; b=cLGJb7IECwyBc0PVn5e7t7c1ZhhgGjl80RXHhjWrJLhmFMT9K+AJYs2fSEUmg6pWHP KwfNY1fGwJUNnr9LwvsDobPjKGSHS9XbIQlt8jBDw92/jJilBW58klfVMPe8yrpV4xaN k0AacqcXlpkBjLYOBUBNYcpRN2r9zGtPpx6i8=
Lemma lt_unique : forall n m (H1 H2 : n < m), H1 = H2.
(if you're lost with the proofs it is contained in the CoLoR library: http://color.inria.fr/doc/CoLoR.Util.Nat.NatUtil.html#lt_unique)
Best,
Adam
On Wed, Feb 10, 2010 at 17:04, Nadeem Abdul Hamid <nadeem AT acm.org> wrote:
I'm working on something where I try to prove properties of functions on some parameterized sets -- i.e.
Module Type SIG.
Parameter A : Set.
Parameter B : Set.
Parameter a_eq_dec : forall (a a':A), a = a' \/ a <> a'.
Parameter f : A -> B.
.... properties of f ...
End SIG.
(* followed by some proofs in another functor of SIG that uses properties of f *)
Now, I want to instantiate SIG with an implementation of A and B being a finite subset of natural numbers, e.g.
Definition A := { n:nat | n < 10 }.
Definition B := { n:nat | n < 10 }.
Lemma a_eq_dec : forall (a a':A), a=a' \/ a<>a'.
...
The problem here is that I can only seem to establish this by introducing the proof_irrelevance axiom.
So the question is: Does anyone have other suggestions for defining concrete instantiations of A and B as finite subsets of the natural numbers, that would allow proof of the a_eq_dec property without introducing proof irrelevance?
Thanks in advance,
nadeem
--
Adam Koprowski [http://www.cs.ru.nl/~Adam.Koprowski]
R&D @ MLstate [15 rue Berlier, 75013 Paris, France]
Sent from Amsterdam, NH, Netherlands
- [Coq-Club] Defining type of a subset of natural numbers, Nadeem Abdul Hamid
- Re: [Coq-Club] Defining type of a subset of natural numbers, Carsten Varming
- Re: [Coq-Club] Defining type of a subset of natural numbers, Adam Chlipala
- Re: [Coq-Club] Defining type of a subset of natural numbers, Yves Bertot
- Re: [Coq-Club] Defining type of a subset of natural numbers, Adam Koprowski
- Re: [Coq-Club] Defining type of a subset of natural numbers, Hugo Herbelin
Archive powered by MhonArc 2.6.16.