Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] How to make the tactic ring use my ring structure?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] How to make the tactic ring use my ring structure?


chronological Thread 
  • From: Laurent Théry <Laurent.Thery AT inria.fr>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] How to make the tactic ring use my ring structure?
  • Date: Mon, 27 Jun 2011 22:21:32 +0200


Hi,

your example is ok, you've just forgot to prove your lemma my_r_th:


(*****************************************************)
Lemma my_r_th : semi_ring_theory origin (next origin) my_r_plus my_r_mult (@eq my_r).
Proof.
admit.
Qed.

Add Ring my_r : my_r_th.


(* This works! *)
Goal forall x, my_r_plus x origin = x.
intros.
ring.

(*****************************************************)


Now to prove my_r_th starts with


(*****************************************************)

Lemma my_r_th : semi_ring_theory origin (next origin) my_r_plus my_r_mult (@eq my_r).
Proof.
split.

(*****************************************************)

and you see what you have to prove.





Archive powered by MhonArc 2.6.16.

Top of Page