Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Stuck on termination proof (ha ha)

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Stuck on termination proof (ha ha)


chronological Thread 
  • From: Adam Chlipala <adam AT chlipala.net>
  • To: frank maltman <frank.maltman AT googlemail.com>
  • Cc: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Stuck on termination proof (ha ha)
  • Date: Mon, 01 Aug 2011 08:58:39 -0400

frank maltman wrote:
However, I'm now stuck proving the first case that does terminate:

--8<--

Lemma pred_numeric_not_stuck : forall (t : term),
   numeric t = true ->  error (one_step (Term_Pred t)) = false.
Proof.
   intros t H.
   induction t.
[...]

I have 'error (one_step (Term_Pred t)) = false' as an induction hypothesis 
but am
unable to prove 'error (one_step (Term_Pred (Term_Pred t))) = false' with it.

I don't think your question is really about Coq. This proof strategy fails on paper, too.

Have you convinced yourself that you have a valid informal proof? That's usually a good first step before formalizing.



Archive powered by MhonArc 2.6.16.

Top of Page