coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Pierre Courtieu <Pierre.Courtieu AT cnam.fr>
- To: Adam Chlipala <adamc AT csail.mit.edu>
- Cc: coq-club AT inria.fr
- Subject: Re: [Coq-Club] dependent induction 2
- Date: Fri, 24 Feb 2012 18:54:14 +0100
- Authentication-results: mr.google.com; spf=pass (google.com: domain of pierre.courtieu AT gmail.com designates 10.204.149.198 as permitted sender) smtp.mail=pierre.courtieu AT gmail.com; dkim=pass header.i=pierre.courtieu AT gmail.com
Yes, JMeq_eq is an axiom, I should have make it explicit.
P.C.
2012/2/24 Adam Chlipala
<adamc AT csail.mit.edu>:
> On 02/24/2012 05:07 AM, Pierre Courtieu wrote:
>>
>> Hello, here is a script proving your goal in v8.3 and v8.4 (14975). It
>> makes use of JMeq but the statement of the lemma is the one you want.
>>
>
>
> But the original request asked for an axiom-free proof, right? Your proof
> uses axiom [JMeq_eq].
- [Coq-Club] dependent induction 2, Andrew Polonsky
- Re: [Coq-Club] dependent induction 2, Arnaud Spiwack
- Re: [Coq-Club] dependent induction 2,
Pierre Courtieu
- Re: [Coq-Club] dependent induction 2,
Adam Chlipala
- Re: [Coq-Club] dependent induction 2, Pierre Courtieu
- Re: [Coq-Club] dependent induction 2,
Vincent Siles
- Re: [Coq-Club] dependent induction 2, Andrew Polonsky
- Re: [Coq-Club] dependent induction 2,
Adam Chlipala
Archive powered by MhonArc 2.6.16.