coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Gert Smolka <smolka AT ps.uni-saarland.de>
- To: "coq-club AT inria.fr" <coq-club AT inria.fr>
- Subject: [Coq-Club] type class instance inference
- Date: Tue, 18 Jun 2013 14:41:43 +0200
I stumbled across a very strange behavior of type class inference.
Definition dec (X : Prop) : Type := {X} + {~ X}.
Definition decision (X : Prop) (D : dec X) : dec X := D.
Arguments decision X {D}.
Existing Class dec.
Instance False_dec : dec False :=
right (fun A => A).
Instance impl_dec (X Y : Prop) : dec X -> dec Y -> dec (X -> Y).
Proof. unfold dec ; tauto. Qed.
Set Printing Implicit.
Check (fun (X : Prop) (D : dec X) => decision (~ X)).
Require List.
Check (fun (X : Prop) (D : dec X) => decision (~ X)).
In the first Check the class argument is derived, in the second it is not.
Both Checks are identical, the difference stems from requiring List in
between.
Is this a bug or a feature? Gert
- [Coq-Club] type class instance inference, Gert Smolka, 06/18/2013
- Re: [Coq-Club] type class instance inference, Matthieu Sozeau, 06/21/2013
- Re: [Coq-Club] type class instance inference, Matthieu Sozeau, 06/21/2013
- Re: [Coq-Club] type class instance inference, Gert Smolka, 06/21/2013
- Re: [Coq-Club] type class instance inference, Matthieu Sozeau, 06/21/2013
- Re: [Coq-Club] type class instance inference, Gert Smolka, 06/21/2013
Archive powered by MHonArc 2.6.18.