coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Pierre Courtieu <pierre.courtieu AT gmail.com>
- To: Coq Club <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] forall implication
- Date: Mon, 27 Apr 2015 15:57:08 +0200
Hi,
This is no true and therefore not provable.
But if you add parenthesis over the first quantified part then it is a
different property (and probably the on one you meant?) that is
provable by "intro h; assumption."
(forall x, (* some complex function depending on x*)) -> forall y, (*
the same complex function depending on y*)
For examepl:
Variable A:Type.
Variable P: Type -> Prop.
Goal (forall x, (P x)) -> (forall y, P y).
Proof.
intro h.
assumption.
Best regards,
Pierre
2015-04-27 15:42 GMT+02:00 richard dapoigny
<richard.dapoigny AT univ-savoie.fr>:
> Hi all,
> I try to demonstrate a goal having the form:
> forall x, (* some complex function depending on x*) -> forall y, (* the same
> complex function depending on y*)
> Is there a simple way to do it?
> Thanks in advance,
> Richard
- [Coq-Club] Last Call: The Coq workshop, deadline April 30th, 2015, bertot, 04/21/2015
- [Coq-Club] forall implication, richard dapoigny, 04/27/2015
- Re: [Coq-Club] forall implication, Pierre Courtieu, 04/27/2015
- Re: [Coq-Club] forall implication, richard dapoigny, 04/27/2015
- Re: [Coq-Club] forall implication, Pierre Courtieu, 04/27/2015
- Re: [Coq-Club] forall implication, richard dapoigny, 04/27/2015
- RE: [Coq-Club] forall implication, Soegtrop, Michael, 04/27/2015
- Re: [Coq-Club] forall implication, Richard Dapoigny, 04/27/2015
- Re: [Coq-Club] forall implication, Pierre Courtieu, 04/27/2015
- Re: [Coq-Club] forall implication, richard dapoigny, 04/27/2015
- Re: [Coq-Club] forall implication, Pierre Courtieu, 04/27/2015
- [Coq-Club] forall implication, richard dapoigny, 04/27/2015
Archive powered by MHonArc 2.6.18.