coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: "Soegtrop, Michael" <michael.soegtrop AT intel.com>
- To: "coq-club AT inria.fr" <coq-club AT inria.fr>
- Subject: RE: [Coq-Club] forall implication
- Date: Mon, 27 Apr 2015 15:40:06 +0000
- Accept-language: de-DE, en-US
Dear Richard,
below is a proof, that this is actually wrong. It gives a counter example,
which shows where the problem is.
Best regards,
Michael
Lemma ThisIsWrong:
(forall (T:Set) (P:T->Prop), forall (x:T), P x -> (forall y, P y))
-> False.
Proof.
intros H.
specialize (H bool).
specialize (H (fun b => b=true)).
specialize (H true).
simpl in H.
specialize (H eq_refl).
specialize (H false).
inversion H.
Qed.
Lemma ThisIsRight:
forall (T:Set) (P:T->Prop), (forall (x:T), P x) -> (forall y, P y).
Proof.
intros T P H.
assumption.
Qed.
- [Coq-Club] Last Call: The Coq workshop, deadline April 30th, 2015, bertot, 04/21/2015
- [Coq-Club] forall implication, richard dapoigny, 04/27/2015
- Re: [Coq-Club] forall implication, Pierre Courtieu, 04/27/2015
- Re: [Coq-Club] forall implication, richard dapoigny, 04/27/2015
- Re: [Coq-Club] forall implication, Pierre Courtieu, 04/27/2015
- Re: [Coq-Club] forall implication, richard dapoigny, 04/27/2015
- RE: [Coq-Club] forall implication, Soegtrop, Michael, 04/27/2015
- Re: [Coq-Club] forall implication, Richard Dapoigny, 04/27/2015
- Re: [Coq-Club] forall implication, Pierre Courtieu, 04/27/2015
- Re: [Coq-Club] forall implication, richard dapoigny, 04/27/2015
- Re: [Coq-Club] forall implication, Pierre Courtieu, 04/27/2015
- [Coq-Club] forall implication, richard dapoigny, 04/27/2015
Archive powered by MHonArc 2.6.18.