Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] forall implication

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] forall implication


Chronological Thread 
  • From: Richard Dapoigny <richard.dapoigny AT univ-savoie.fr>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] forall implication
  • Date: Mon, 27 Apr 2015 19:46:29 +0200

Le 27/04/2015 17:40, Soegtrop, Michael a écrit :
Dear Richard,

below is a proof, that this is actually wrong. It gives a counter example, which shows where the problem is.
Thank you for your kind (and precise) help.
Richard

Best regards,

Michael

Lemma ThisIsWrong: 
  (forall (T:Set) (P:T->Prop), forall (x:T), P x -> (forall y, P y))
   -> False.
Proof.
  intros H.
  specialize (H bool).
  specialize (H (fun b => b=true)).
  specialize (H true).
  simpl in H.
  specialize (H eq_refl).
  specialize (H false).
  inversion H.
Qed.

Lemma ThisIsRight: 
  forall (T:Set) (P:T->Prop), (forall (x:T), P x) -> (forall y, P y).
Proof.
  intros T P H.
  assumption.
Qed.



--

JPEG image

begin:vcard
fn:Richard Dapoigny
n:Dapoigny;Richard
email;internet:richard.dapoigny AT univ-savoie.fr
tel;work:+33 450 09 65 29
tel;cell:+33 621 35 31 43
version:2.1
end:vcard




Archive powered by MHonArc 2.6.18.

Top of Page