coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Richard Dapoigny <richard.dapoigny AT univ-savoie.fr>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] forall implication
- Date: Mon, 27 Apr 2015 19:46:29 +0200
Le 27/04/2015 17:40, Soegtrop, Michael
a écrit :
Dear Richard, below is a proof, that this is actually wrong. It gives a counter example, which shows where the problem is.Thank you for your kind (and precise) help. Richard Best regards, Michael Lemma ThisIsWrong: (forall (T:Set) (P:T->Prop), forall (x:T), P x -> (forall y, P y)) -> False. Proof. intros H. specialize (H bool). specialize (H (fun b => b=true)). specialize (H true). simpl in H. specialize (H eq_refl). specialize (H false). inversion H. Qed. Lemma ThisIsRight: forall (T:Set) (P:T->Prop), (forall (x:T), P x) -> (forall y, P y). Proof. intros T P H. assumption. Qed. --
|
begin:vcard fn:Richard Dapoigny n:Dapoigny;Richard email;internet:richard.dapoigny AT univ-savoie.fr tel;work:+33 450 09 65 29 tel;cell:+33 621 35 31 43 version:2.1 end:vcard
- [Coq-Club] Last Call: The Coq workshop, deadline April 30th, 2015, bertot, 04/21/2015
- [Coq-Club] forall implication, richard dapoigny, 04/27/2015
- Re: [Coq-Club] forall implication, Pierre Courtieu, 04/27/2015
- Re: [Coq-Club] forall implication, richard dapoigny, 04/27/2015
- Re: [Coq-Club] forall implication, Pierre Courtieu, 04/27/2015
- Re: [Coq-Club] forall implication, richard dapoigny, 04/27/2015
- RE: [Coq-Club] forall implication, Soegtrop, Michael, 04/27/2015
- Re: [Coq-Club] forall implication, Richard Dapoigny, 04/27/2015
- Re: [Coq-Club] forall implication, Pierre Courtieu, 04/27/2015
- Re: [Coq-Club] forall implication, richard dapoigny, 04/27/2015
- Re: [Coq-Club] forall implication, Pierre Courtieu, 04/27/2015
- [Coq-Club] forall implication, richard dapoigny, 04/27/2015
Archive powered by MHonArc 2.6.18.