coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Jason Gross <jasongross9 AT gmail.com>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] UIP and decidable equality
- Date: Mon, 12 Sep 2016 20:48:19 +0000
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=jasongross9 AT gmail.com; spf=Pass smtp.mailfrom=jasongross9 AT gmail.com; spf=None smtp.helo=postmaster AT mail-qk0-f171.google.com
- Ironport-phdr: 9a23:zv2mZhyKMORiEzjXCy+O+j09IxM/srCxBDY+r6Qd0e8QIJqq85mqBkHD//Il1AaPBtSCrawUwLOK7OigATVGusfZ9ihaMdRlbFwssY0uhQsuAcqIWwXQDcXBSGgEJvlET0Jv5HqhMEJYS47UblzWpWCuv3ZJQk2sfTR8Kum9IIPOlcP/j7n0oMyKJVsYz2PhPvsydEzw9lSJ8JFOwMNLEeUY8lPxuHxGeuBblytDBGm4uFLC3Pq254Np6C9KuvgspIZqWKT+eLkkH/QDVGx1ezN92Mq+vh7aCACL+3E0U2MMkxMODRKWwgv9W8LTuzD9sKJSwi6BJoWiT7kvXjKt9aBwU07AhyIONjp/+2bS3J8jxJlHqQ6s8kQsi7XfZ5uYYaJz
Thorsten, your proof requires function extensionality, right?
Definition stability A := forall x y : A, ~~(x = y) -> x = y.
Definition constant_endofunction_eq A : forall x y : A, { f : x = y -> x = y | forall e1 e2, f e1 = f e2 }.
And the claim is [stability A -> constant_endofunction_eq A], that [constant_endofunction_eq A -> UIP_on A], and that all of the standard type formers preserved [stability].
On Mon, Sep 12, 2016 at 12:43 PM Jonathan Leivent <jonikelee AT gmail.com> wrote:
On 09/12/2016 01:57 PM, Thorsten Altenkirch wrote:
> The proof by Hedberg only requires that there is a constant endofunction
>
> Pi x,y:A. x=y -> x=y
>
> However, this already follows from stability
>
> Pi x,y:A ~~(x = y) -> x=y
>
> by composing with x=y -> ~~(x = y) [see lemma 3.5 in our paper
> http://www.cs.nott.ac.uk/~psztxa/publ/jhedberg.pdf)
But, in Coq, is this true?: "There is, for any x, y : X, a canonical
map x=y -> ~~(x = y) ."
which, if I understand this correctly, means:
Goal forall X (x y:X) (e1 e2 : ~~(x = y)), e1=e2.
which I don't see how to prove in Coq for arbitrary X.
-- Jonathan
- [Coq-Club] UIP and decidable equality, Alan Schmitt, 09/09/2016
- Re: [Coq-Club] UIP and decidable equality, Jason Gross, 09/09/2016
- Re: [Coq-Club] UIP and decidable equality, Alan Schmitt, 09/09/2016
- Re: [Coq-Club] UIP and decidable equality, Thorsten Altenkirch, 09/12/2016
- Re: [Coq-Club] UIP and decidable equality, Jonathan Leivent, 09/12/2016
- Re: [Coq-Club] UIP and decidable equality, Jason Gross, 09/12/2016
- Re: [Coq-Club] UIP and decidable equality, Thorsten Altenkirch, 09/13/2016
- Re: [Coq-Club] UIP and decidable equality, Jonathan Leivent, 09/13/2016
- Re: [Coq-Club] UIP and decidable equality, Maxime Dénès, 09/13/2016
- Re: [Coq-Club] UIP and decidable equality, Jonathan Leivent, 09/13/2016
- Re: [Coq-Club] UIP and decidable equality, Maxime Dénès, 09/13/2016
- Re: [Coq-Club] UIP and decidable equality, Pierre-Marie Pédrot, 09/13/2016
- Re: [Coq-Club] UIP and decidable equality, Thorsten Altenkirch, 09/13/2016
- Re: [Coq-Club] UIP and decidable equality, Jason Gross, 09/12/2016
- Re: [Coq-Club] UIP and decidable equality, Jonathan Leivent, 09/12/2016
- Re: [Coq-Club] UIP and decidable equality, Thorsten Altenkirch, 09/12/2016
- Re: [Coq-Club] UIP and decidable equality, Jonathan Leivent, 09/13/2016
- Re: [Coq-Club] UIP and decidable equality, Alan Schmitt, 09/09/2016
- Re: [Coq-Club] UIP and decidable equality, Thorsten Altenkirch, 09/13/2016
- Re: [Coq-Club] UIP and decidable equality, Jason Gross, 09/09/2016
- Re: [Coq-Club] UIP and decidable equality, Alan Schmitt, 09/13/2016
Archive powered by MHonArc 2.6.18.