Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] proving a lemma in a proof

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] proving a lemma in a proof


Chronological Thread 
  • From: Jan Bessai <jan.bessai AT tu-dortmund.de>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] proving a lemma in a proof
  • Date: Tue, 22 Jan 2019 15:25:56 +0100
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=jan.bessai AT tu-dortmund.de; spf=Pass smtp.mailfrom=jan.bessai AT tu-dortmund.de; spf=None smtp.helo=postmaster AT unimail.uni-dortmund.de
  • Autocrypt: addr=jan.bessai AT tu-dortmund.de; prefer-encrypt=mutual; keydata= mQENBEuo400BCADHE9QPhcgvwt5SnpGIM+6jvqwSrDPewbrG6pXYTMX1NMBVjXbsvTgjsLPQ lnkE4+OfafMKybDqCZvs1T60p+7LS1M09qjorGEllM4XFYvSoW/tEm7jPh+dF/OQSmRiEZ7y m5hKlyYpkgEI/I/w17pp8ecr9KSitZRygtWOIv+b8T5E8ofb7ymE9Ts8wGbWUdoBZ9HG3Pxn EwfJvqaXZ1hq9tknB2YPQCtaO7RGPIDnDxkChnsBHdMUL5cFVxnXMCgokFMGocyjNK+MkoQq 23IzZW1kHrH9G7Dyve1IwXmEUW9qXdf01zLbdysy+Bu94Y/JfNb245RVghGUq3/XYPYVABEB AAG0JkphbiBCZXNzYWkgPEphbi5CZXNzYWlAdHUtZG9ydG11bmQuZGU+iQE4BBMBAgAiBQJL qONNAhsDBgsJCAcDAgYVCAIJCgsEFgIDAQIeAQIXgAAKCRAjc0RRCV1tGB20B/9uUtH9ERZc oJvODEuugm+8kCrQrQAlJt5fqrrNNmb9E1DKISGgJZsKo0hxtokbbuoqrId1i6BjWlcZTW7Y SylS3+FmI2sUl/XoegJQC1wSKSUwedsxht9bXQYKw99K+RCEF+LPnpKEuDQDWQ+7zwgdJ+Mu LQ50Xwo+R1W+Vk54IVQbyXDI5K3IKaBp9Gzd6TU3v951tzSj8BrIjPVBx6tCXBkM6E7I/lwU Wgtf0WRNDm7VRabB6jL/aVz+Qs0Cu6Wh6Pw5IjzTmGX1i888Kw8RCFi9ZAVQYfJZKFBqh1AX kIag0nmrUC3nVJvWMBH9wIyc0TWZDHoANTy9lAnFfloSuQENBEuo400BCAC9E2QVS95F7ZOS MK0hy5JSGYhr8ZafR/pkcr0ipjGaj/d6l6b0HJXj5qSLPZYHNS9+6pXk3mSNlFUnqJ+65tzk XDNmfhja/9f/HdDXsx87j7/ZqB/wHDi3IEHrPACxDkEHQ/800C83EsFawf6kYuWKCp/MoA84 u/50SJrFUNdrH9uwdhPSmzDzVYlzHKF4RsGG3/PmRpTGjcJwUjKomc9xMIp5kHOyIoqs88Sz zAn5k5UgpsX7V8Y2wkwGulZjo8mK3wSHtIKXTqM6SPEfMjANpKGiOG7RLaNOM3rIboM0o/ty T97IaxoAdZF7ufEh1APi1yAzITLUEGNd5pLE5k6NABEBAAGJAR8EGAECAAkFAkuo400CGwwA CgkQI3NEUQldbRjnlwf/fOxz1iUP4gGMNPO1NRxpJPLoLAVH7Maqm86I99pvusYU/iPAj4E9 hBCbQFK45R3a9JPrRgXlTytTX751t3nEdbvMJ7Qc9Xj+5k6CC7PCWVDVuQ6O6FEYT/5PK1/c +Wgz4GCGsaYU3wh6ZD72tUO6HHKUpixCkFyZi/6N07dSbFR2jCxzW2Nzm5Ya+J4Vtfce0CoY A1dpfEytKv1ySmQvb7QaEoLE6ZJgJHPF9p9NBGx/uN/e6PTJUE7zQaEJ8EJdHUS8bpiX9tN7 5IXKvCF4fCCuk3TUxaeY5EISHc4n63p3TZd1qCJLJVwptifIDyAmc08o+oXFGmB0BdPMu7gT bg==
  • Ironport-phdr: 9a23:p7zx1ReIUa6DWxJ0ikkqJFZplGMj4u6mDksu8pMizoh2WeGdxcS7bB7h7PlgxGXEQZ/co6odzbaO4+a4ASQp2tWoiDg6aptCVhsI2409vjcLJ4q7M3D9N+PgdCcgHc5PBxdP9nC/NlVJSo6lPwWB6nK94iQPFRrhKAF7Ovr6GpLIj8Swyuu+54Dfbx9HiTahYr5+Ngm6oRnMvcQKnIVuLbo8xAHUqXVSYeRWwm1oJVOXnxni48q74YBu/SdNtf8/7sBMSar1cbg2QrxeFzQmLns65Nb3uhnZTAuA/WUTX2MLmRdVGQfF7RX6XpDssivms+d2xSeXMdHqQb0yRD+v6bpgRh31hycdLzM37X/ZisJwgqxYrhyuqRNwzIzIb4+aL/d+YqDQcMkGSWZdUMtcVSpMCZ68YYsVCOoBOP5VoY3nqFsIsBCzGBejBPj0yjBSh3/9wKo30+Y7HgHAxgAvBMwBsG/PrNrvNacfSvy1zLTRwTreaPNWwyv96I3VchAnvP6AR69/ftTIxEQpCgjLgFKQqYn/MDOU0OQAq3Sb7/d5We2yjG4nsR1xoj2yxscql4bFnJ8axU7c+SV2wYY1Od24SFNgbtK+DJRQsCSaOo1rSc0hW2FloDs2xqMCtJKhYiQG1ZYqywTCZ/CZcIWE+BLuWPuJLTtlmn5ofKiziwiv/UWi0OHxWcu53ExXoidGkNTBsG0G2QbJ5cidUPR9+1+s2TaR2ADX7eFJOV00lazaK54k2LEwl54TvV7eHi/wmUX6lbKZdkI++ui07uTnf7PmqYKGO4BplA7yKqUumsqhDuQkKgUCQnaX9OCm2LH94EH0Qq9GguAonqTaqpzXJdkXqra8AwBP04Yj7xi/Dy2h0NQdhXQHLkhKeBSdg4fyJV7OO+v4Au2+g1m3jDdr2unKMaDmApXXMnjDlarhfbBg5EJG1QU808hT54hIBbEZPPLzRkjxucTEAR8+Kgy42vroCNFg1owFQm+PGa+YMKbKsVCS/O4vIu+MZJUUuDnnMfQl6eTu3jcFngoWerDs1p8KYli5GO5nKgOXeynCmNAEREUDuEIUQffxgVzKBTxaYTC4Urkn7zATFJ/jAYDZWoWwhrDH0CrtTc4eXXxPFl3ZSSSgTI6DQfpZMHvDcP8kqSQNUP2ac6Fk0BivsAHgzL8+cLjI52gUsoj/0cVz66vfmENrrGAmP4Gmy2iIClpMsCYQXTZvgvJjvAlxzU2f1LV+j7pUGI4Lvq4bYkIBLZfZitdCJZXyVwbGJIrbVVCnR9ynBXcsSNN0z9gUf0NgHdnkgh2Rhyc=
  • Openpgp: preference=signencrypt

Hi,

maybe it helps you, that Company-Coq has

" C-c C-a C-x extracts the current goal into a separate lemma. "

which might be quite useful in your case:

https://github.com/cpitclaudel/company-coq

-- Jan



On 22.01.19 13:25, Laurent Thery wrote:
>
> Hi,
>
> On 1/22/19 6:08 AM, Jeremy Dawson wrote:
>> So my question is, having decided during a proof that a particular lemma
>> would be useful, how to I prove and use it?
>
> If it is a local assertion that you will use only inside the proof,
> you can use the tactic have (ssreflect) or the tactic assert (standard
> Coq) to add it to the context.
>
> If it is a global lemma, good practice is to abort the proof. Prove the
> lemma and then replay the proof.
>

--
Jan Bessai (M.Sc.)
Wissenschaftlicher Mitarbeiter

Technische Universität Dortmund
Fakultät für Informatik - Lehrstuhl 14 Software Engineering
Otto-Hahn Straße 14
D-44227 Dortmund

Tel.: +49 231-755 77 64
Fax: +49 231-755 79 36
jan.bessai AT tu-dortmund.de
www.tu-dortmund.de


Wichtiger Hinweis: Die Information in dieser E-Mail ist vertraulich. Sie
ist ausschließlich für den Adressaten bestimmt. Sollten Sie nicht der
für diese E-Mail bestimmte Adressat sein, unterrichten Sie bitte den
Absender und vernichten Sie diese Mail. Vielen Dank.
Unbeschadet der Korrespondenz per E-Mail, sind unsere Erklärungen
ausschließlich final rechtsverbindlich, wenn sie in herkömmlicher
Schriftform (mit eigenhändiger Unterschrift) oder durch Übermittlung
eines solchen Schriftstücks per Telefax erfolgen.

Important note: The information included in this e-mail is confidential.
It is solely intended for the recipient. If you are not the intended
recipient of this e-mail please contact the sender and delete this
message. Thank you.
Without prejudice of e-mail correspondence, our statements are only
legally binding when they are made in the conventional written form
(with personal signature) or when such documents are sent by fax.



Archive powered by MHonArc 2.6.18.

Top of Page