coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Jan Bessai <jan.bessai AT tu-dortmund.de>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] proving a lemma in a proof
- Date: Tue, 22 Jan 2019 15:25:56 +0100
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=jan.bessai AT tu-dortmund.de; spf=Pass smtp.mailfrom=jan.bessai AT tu-dortmund.de; spf=None smtp.helo=postmaster AT unimail.uni-dortmund.de
- Autocrypt: addr=jan.bessai AT tu-dortmund.de; prefer-encrypt=mutual; keydata= mQENBEuo400BCADHE9QPhcgvwt5SnpGIM+6jvqwSrDPewbrG6pXYTMX1NMBVjXbsvTgjsLPQ lnkE4+OfafMKybDqCZvs1T60p+7LS1M09qjorGEllM4XFYvSoW/tEm7jPh+dF/OQSmRiEZ7y m5hKlyYpkgEI/I/w17pp8ecr9KSitZRygtWOIv+b8T5E8ofb7ymE9Ts8wGbWUdoBZ9HG3Pxn EwfJvqaXZ1hq9tknB2YPQCtaO7RGPIDnDxkChnsBHdMUL5cFVxnXMCgokFMGocyjNK+MkoQq 23IzZW1kHrH9G7Dyve1IwXmEUW9qXdf01zLbdysy+Bu94Y/JfNb245RVghGUq3/XYPYVABEB AAG0JkphbiBCZXNzYWkgPEphbi5CZXNzYWlAdHUtZG9ydG11bmQuZGU+iQE4BBMBAgAiBQJL qONNAhsDBgsJCAcDAgYVCAIJCgsEFgIDAQIeAQIXgAAKCRAjc0RRCV1tGB20B/9uUtH9ERZc oJvODEuugm+8kCrQrQAlJt5fqrrNNmb9E1DKISGgJZsKo0hxtokbbuoqrId1i6BjWlcZTW7Y SylS3+FmI2sUl/XoegJQC1wSKSUwedsxht9bXQYKw99K+RCEF+LPnpKEuDQDWQ+7zwgdJ+Mu LQ50Xwo+R1W+Vk54IVQbyXDI5K3IKaBp9Gzd6TU3v951tzSj8BrIjPVBx6tCXBkM6E7I/lwU Wgtf0WRNDm7VRabB6jL/aVz+Qs0Cu6Wh6Pw5IjzTmGX1i888Kw8RCFi9ZAVQYfJZKFBqh1AX kIag0nmrUC3nVJvWMBH9wIyc0TWZDHoANTy9lAnFfloSuQENBEuo400BCAC9E2QVS95F7ZOS MK0hy5JSGYhr8ZafR/pkcr0ipjGaj/d6l6b0HJXj5qSLPZYHNS9+6pXk3mSNlFUnqJ+65tzk XDNmfhja/9f/HdDXsx87j7/ZqB/wHDi3IEHrPACxDkEHQ/800C83EsFawf6kYuWKCp/MoA84 u/50SJrFUNdrH9uwdhPSmzDzVYlzHKF4RsGG3/PmRpTGjcJwUjKomc9xMIp5kHOyIoqs88Sz zAn5k5UgpsX7V8Y2wkwGulZjo8mK3wSHtIKXTqM6SPEfMjANpKGiOG7RLaNOM3rIboM0o/ty T97IaxoAdZF7ufEh1APi1yAzITLUEGNd5pLE5k6NABEBAAGJAR8EGAECAAkFAkuo400CGwwA CgkQI3NEUQldbRjnlwf/fOxz1iUP4gGMNPO1NRxpJPLoLAVH7Maqm86I99pvusYU/iPAj4E9 hBCbQFK45R3a9JPrRgXlTytTX751t3nEdbvMJ7Qc9Xj+5k6CC7PCWVDVuQ6O6FEYT/5PK1/c +Wgz4GCGsaYU3wh6ZD72tUO6HHKUpixCkFyZi/6N07dSbFR2jCxzW2Nzm5Ya+J4Vtfce0CoY A1dpfEytKv1ySmQvb7QaEoLE6ZJgJHPF9p9NBGx/uN/e6PTJUE7zQaEJ8EJdHUS8bpiX9tN7 5IXKvCF4fCCuk3TUxaeY5EISHc4n63p3TZd1qCJLJVwptifIDyAmc08o+oXFGmB0BdPMu7gT bg==
- Ironport-phdr: 9a23:p7zx1ReIUa6DWxJ0ikkqJFZplGMj4u6mDksu8pMizoh2WeGdxcS7bB7h7PlgxGXEQZ/co6odzbaO4+a4ASQp2tWoiDg6aptCVhsI2409vjcLJ4q7M3D9N+PgdCcgHc5PBxdP9nC/NlVJSo6lPwWB6nK94iQPFRrhKAF7Ovr6GpLIj8Swyuu+54Dfbx9HiTahYr5+Ngm6oRnMvcQKnIVuLbo8xAHUqXVSYeRWwm1oJVOXnxni48q74YBu/SdNtf8/7sBMSar1cbg2QrxeFzQmLns65Nb3uhnZTAuA/WUTX2MLmRdVGQfF7RX6XpDssivms+d2xSeXMdHqQb0yRD+v6bpgRh31hycdLzM37X/ZisJwgqxYrhyuqRNwzIzIb4+aL/d+YqDQcMkGSWZdUMtcVSpMCZ68YYsVCOoBOP5VoY3nqFsIsBCzGBejBPj0yjBSh3/9wKo30+Y7HgHAxgAvBMwBsG/PrNrvNacfSvy1zLTRwTreaPNWwyv96I3VchAnvP6AR69/ftTIxEQpCgjLgFKQqYn/MDOU0OQAq3Sb7/d5We2yjG4nsR1xoj2yxscql4bFnJ8axU7c+SV2wYY1Od24SFNgbtK+DJRQsCSaOo1rSc0hW2FloDs2xqMCtJKhYiQG1ZYqywTCZ/CZcIWE+BLuWPuJLTtlmn5ofKiziwiv/UWi0OHxWcu53ExXoidGkNTBsG0G2QbJ5cidUPR9+1+s2TaR2ADX7eFJOV00lazaK54k2LEwl54TvV7eHi/wmUX6lbKZdkI++ui07uTnf7PmqYKGO4BplA7yKqUumsqhDuQkKgUCQnaX9OCm2LH94EH0Qq9GguAonqTaqpzXJdkXqra8AwBP04Yj7xi/Dy2h0NQdhXQHLkhKeBSdg4fyJV7OO+v4Au2+g1m3jDdr2unKMaDmApXXMnjDlarhfbBg5EJG1QU808hT54hIBbEZPPLzRkjxucTEAR8+Kgy42vroCNFg1owFQm+PGa+YMKbKsVCS/O4vIu+MZJUUuDnnMfQl6eTu3jcFngoWerDs1p8KYli5GO5nKgOXeynCmNAEREUDuEIUQffxgVzKBTxaYTC4Urkn7zATFJ/jAYDZWoWwhrDH0CrtTc4eXXxPFl3ZSSSgTI6DQfpZMHvDcP8kqSQNUP2ac6Fk0BivsAHgzL8+cLjI52gUsoj/0cVz66vfmENrrGAmP4Gmy2iIClpMsCYQXTZvgvJjvAlxzU2f1LV+j7pUGI4Lvq4bYkIBLZfZitdCJZXyVwbGJIrbVVCnR9ynBXcsSNN0z9gUf0NgHdnkgh2Rhyc=
- Openpgp: preference=signencrypt
Hi,
maybe it helps you, that Company-Coq has
" C-c C-a C-x extracts the current goal into a separate lemma. "
which might be quite useful in your case:
https://github.com/cpitclaudel/company-coq
-- Jan
On 22.01.19 13:25, Laurent Thery wrote:
>
> Hi,
>
> On 1/22/19 6:08 AM, Jeremy Dawson wrote:
>> So my question is, having decided during a proof that a particular lemma
>> would be useful, how to I prove and use it?
>
> If it is a local assertion that you will use only inside the proof,
> you can use the tactic have (ssreflect) or the tactic assert (standard
> Coq) to add it to the context.
>
> If it is a global lemma, good practice is to abort the proof. Prove the
> lemma and then replay the proof.
>
--
Jan Bessai (M.Sc.)
Wissenschaftlicher Mitarbeiter
Technische Universität Dortmund
Fakultät für Informatik - Lehrstuhl 14 Software Engineering
Otto-Hahn Straße 14
D-44227 Dortmund
Tel.: +49 231-755 77 64
Fax: +49 231-755 79 36
jan.bessai AT tu-dortmund.de
www.tu-dortmund.de
Wichtiger Hinweis: Die Information in dieser E-Mail ist vertraulich. Sie
ist ausschließlich für den Adressaten bestimmt. Sollten Sie nicht der
für diese E-Mail bestimmte Adressat sein, unterrichten Sie bitte den
Absender und vernichten Sie diese Mail. Vielen Dank.
Unbeschadet der Korrespondenz per E-Mail, sind unsere Erklärungen
ausschließlich final rechtsverbindlich, wenn sie in herkömmlicher
Schriftform (mit eigenhändiger Unterschrift) oder durch Übermittlung
eines solchen Schriftstücks per Telefax erfolgen.
Important note: The information included in this e-mail is confidential.
It is solely intended for the recipient. If you are not the intended
recipient of this e-mail please contact the sender and delete this
message. Thank you.
Without prejudice of e-mail correspondence, our statements are only
legally binding when they are made in the conventional written form
(with personal signature) or when such documents are sent by fax.
- Re: [Coq-Club] proving a lemma in a proof, (continued)
- Re: [Coq-Club] proving a lemma in a proof, Maxime Dénès, 01/22/2019
- Re: [Coq-Club] proving a lemma in a proof, Jim Fehrle, 01/22/2019
- RE: [Coq-Club] proving a lemma in a proof, Soegtrop, Michael, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Gaëtan Gilbert, 01/23/2019
- RE: [Coq-Club] proving a lemma in a proof, Soegtrop, Michael, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, James McKinna, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Christian Doczkal, 01/23/2019
- RE: [Coq-Club] proving a lemma in a proof, Soegtrop, Michael, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Gaëtan Gilbert, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Jeremy Dawson, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Laurent Thery, 01/22/2019
- Re: [Coq-Club] proving a lemma in a proof, Jan Bessai, 01/22/2019
- Re: [Coq-Club] proving a lemma in a proof, Gaëtan Gilbert, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Pierre Courtieu, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Adam Chlipala, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Théo Zimmermann, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Maxime Dénès, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Adam Chlipala, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Ralf Jung, 01/24/2019
- Re: [Coq-Club] proving a lemma in a proof, Théo Zimmermann, 01/24/2019
- Re: [Coq-Club] proving a lemma in a proof, Adam Chlipala, 01/24/2019
- Re: [Coq-Club] proving a lemma in a proof, Beta Ziliani, 01/24/2019
- Re: [Coq-Club] proving a lemma in a proof, Adam Chlipala, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Maxime Dénès, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Théo Zimmermann, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Adam Chlipala, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Pierre Courtieu, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Maxime Dénès, 01/22/2019
Archive powered by MHonArc 2.6.18.