coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Jeremy Dawson <Jeremy.Dawson AT anu.edu.au>
- To: "coq-club AT inria.fr" <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] proving a lemma in a proof
- Date: Wed, 23 Jan 2019 22:38:09 +0000
- Accept-language: en-US
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=Jeremy.Dawson AT anu.edu.au; spf=Pass smtp.mailfrom=Jeremy.Dawson AT anu.edu.au; spf=Pass smtp.helo=postmaster AT AUS01-SY3-obe.outbound.protection.outlook.com
- Ironport-phdr: 9a23:YUoKUxzninzojNHXCy+O+j09IxM/srCxBDY+r6Qd2+0SIJqq85mqBkHD//Il1AaPAd2Lraocw8Pt8InYEVQa5piAtH1QOLdtbDQizfssogo7HcSeAlf6JvO5JwYzHcBFSUM3tyrjaRsdF8nxfUDdrWOv5jAOBBr/KRB1JuPoEYLOksi7ze+/94HQbglSmDaxfa55IQmrownWqsQYm5ZpJLwryhvOrHtIeuBWyn1tKFmOgRvy5dq+8YB6/ShItP0v68BPUaPhf6QlVrNYFygpM3o05MLwqxbOSxaE62YGXWUXlhpIBBXF7A3/U5zsvCb2qvZx1S+HNsDwULs6Wymt771zRRHolikJKiI5/m/UhMx+jq1boQ6uqRNwzIPPfIGaL+Bzcr/Bcd8GR2dMWNtaWSxbAoO7aosCF+4PMvhCr4bjolsPrQa1Cwe2C+Lh0T9IgXn21rA93uolDw7GxhIvH9cOsXjOotv6LqkTUfuyzKnO1jjMdfVW2Srn5IfWbx8hvOuAUqhtccfIz0QkCgDLjk2IpIHqIz+ZzPkBv3SZ4uZ6SO6ihWwqpxtsrjSx2MsgkobEi4YPxlzZ8Sh0wJw5KcCmREJne9KoDZVduiKCO4t4XMwvQH1ktSM/x7ACupO0ZycHxZE6yxPRdfOIbo2F4hz9W+uSPTt1gWxpd6mxhxu990Wr1/fyWdOu0FlQqypIitnMuW4J1xzU8sWKVvVy8Fq91TqSzgzd9+NLLE4tmarcMJEu3KQ8lp0OsUTfBSD2n1j2jKmLeUk+4uio8ePnYqn4qZCAK490iwb+MqI0lsy4HOQ4LgwOX2+c+eS/zrHs4Ur5QLBSgv03lKnWrozaKNwUq6KlGQNZz5ov5hSlAzu73tkVn2MLIE9bdB6Zl4TpPkvBIPH8DfexmVSslzJryujCMLL/GJXCMH3Dkbf7cbhz8UFdxhEzzddZ559PEL4BJu/zVlXvu9PFEx81KRa7w/v/BNVnyoweQX6PArOeMK7KrVCI4fsvL/CQa48RpTbyMOMo5+XujH88gV8SZ7Ol3ZoRaHCiH/RpOV+VYXT2goRJLWBf9AE5VanhjECIeT9VfXe7GawmrHlvA4W/SIzHW4qFgbqb3S79EIcANU5cDVXZM3ryeoCVE9sFdzmVJIc1sDEeWL2wDaMoygqpsifzzachI+bJvCQF48GwnONp7vHewElhvQd/CN6QhjnUHjNE21gQTjpz55hR5El0y1ONy6992qYKHNpOof5FT0EzKMyFlrAoO5XJQgvEO+yxZhO+WNz/W2M4SM93ztMTJU9gSY3700LzmhGyCrpQrISlQZw59qWAgCrYGv0lkjP95fJkiFMrBMxSKWehm6hzsRDJAJLEmFmYkKDscrkA2CnK9yGIym/c5Uw=
Hi Theo,
I assume "proper interface" refers to, for example, coqide.
Are you simply alluding to the fact that coqide makes it easier to
follow Laurent's answer ie "abort the proof. Prove the
lemma and then replay the proof",
or is there some feature of coqide (which I haven't found) which
facilitates "state your lemma and prove it outside (above) your current
proof"
Thanks
Jeremy
On 01/22/2019 06:47 PM, Théo Zimmermann wrote:
> Hi Jeremy,
>
> Sorry to insist but the simplest answer to this question is: use a
> proper interface which will allow you to state your lemma and prove it
> outside (above) your current proof. Nested lemmas are a feature whose
> use is strongly discouraged. Some users insist they need it (in
> particular during computation heavy proofs) and that's the only reason
> the feature has not been removed but the Coq developers are not
> interested in fixing bugs it may have...
>
> Théo
- Re: [Coq-Club] proving a lemma in a proof, (continued)
- Re: [Coq-Club] proving a lemma in a proof, Adam Chlipala, 01/22/2019
- Re: [Coq-Club] proving a lemma in a proof, Andrew Appel, 01/22/2019
- Re: [Coq-Club] proving a lemma in a proof, Maxime Dénès, 01/22/2019
- Re: [Coq-Club] proving a lemma in a proof, Jim Fehrle, 01/22/2019
- RE: [Coq-Club] proving a lemma in a proof, Soegtrop, Michael, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Gaëtan Gilbert, 01/23/2019
- RE: [Coq-Club] proving a lemma in a proof, Soegtrop, Michael, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, James McKinna, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Christian Doczkal, 01/23/2019
- RE: [Coq-Club] proving a lemma in a proof, Soegtrop, Michael, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Gaëtan Gilbert, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Jeremy Dawson, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Laurent Thery, 01/22/2019
- Re: [Coq-Club] proving a lemma in a proof, Jan Bessai, 01/22/2019
- Re: [Coq-Club] proving a lemma in a proof, Gaëtan Gilbert, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Pierre Courtieu, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Adam Chlipala, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Théo Zimmermann, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Maxime Dénès, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Adam Chlipala, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Ralf Jung, 01/24/2019
- Re: [Coq-Club] proving a lemma in a proof, Théo Zimmermann, 01/24/2019
- Re: [Coq-Club] proving a lemma in a proof, Adam Chlipala, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Maxime Dénès, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Théo Zimmermann, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Adam Chlipala, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Pierre Courtieu, 01/23/2019
- Re: [Coq-Club] proving a lemma in a proof, Adam Chlipala, 01/22/2019
Archive powered by MHonArc 2.6.18.