Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] existT

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] existT


Chronological Thread 
  • From: Chris Dams <chris.dams.nl AT gmail.com>
  • To: coq-club <coq-club AT inria.fr>
  • Subject: Re: [Coq-Club] existT
  • Date: Wed, 16 Oct 2019 16:04:30 +0200
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=chris.dams.nl AT gmail.com; spf=Pass smtp.mailfrom=chris.dams.nl AT gmail.com; spf=None smtp.helo=postmaster AT mail-wm1-f45.google.com
  • Ironport-phdr: 9a23:pEeNqR+ZkFVZ7P9uRHKM819IXTAuvvDOBiVQ1KB40egcTK2v8tzYMVDF4r011RmVBN6dtK8P1LGempujcFRI2YyGvnEGfc4EfD4+ouJSoTYdBtWYA1bwNv/gYn9yNs1DUFh44yPzahANS47xaFLIv3K98yMZFAnhOgppPOT1HZPZg9iq2+yo9JDffgtFiCC/bL5yIxm7rwvcvdQKjIV/Lao81gHHqWZSdeRMwmNoK1OTnxLi6cq14ZVu7Sdete8/+sBZSan1cLg2QrJeDDQ9LmA6/9brugXZTQuO/XQTTGMbmQdVDgff7RH6WpDxsjbmtud4xSKXM9H6QawyVD+/6apgVR3mhzodNzMh/27XhM5/gqJVrhyiuhJx3ZLbbZqPO/ZiZK7QZ88WSXZDU8tXSidPApm8b4wKD+cZI+tYr5P9p1oVrRCjCwejHubvyiRVjXLxwaI60/4hEQDd3AA6At0BqnHUrM7vOKcUVeC416bIzTDZYPNX3Tfx8pTHchckofyVW797bMnfyVE3Gg/bklmdrZbpMjCV2+gXrmSX8eltWfighmMnrQx6vyKhyd02iobTg4IY0lDE+jt9wIYyPdC4TVR0Yd+gEJdJuSCaMpZ6TtosQ2xnuCs20LIGuZm8fCgFzJQo2QTTZOCAc4iN+h7jVeCRLilkhH99Zr6zmxK//VKjx+D8TMW4zUhGoylfntTDtn0BzxnT5dKGSvt58EehwzGP1wXL5+5YIUA0j6vbK4U7zrEtjJUTtF/DEjXwmEXyl6KWeUAk9fKp6+TjeLnpupicN4pshgHkLqsugtC/Afg/MgUWQ2eb/v282KT/8k39XbVFleY7krLZsZDfPcQUvLS1Aw5T0oY56hawFS2q0NoCnSpPEFUQcxWeyoPtJluGdPv/FLK0h0mmuDZt3fHPeLP7VMbjNH/GxZzhZ7dmo2JVzRF7mdtf/ZNPTL0IJem1XEvZu9nRDxt/OAuxlbW0QO5h358TDDrcSpSSN7nf5AfRurAfZtKUbYpQgw7TbuA/7qe333A8kF4ZO6Ku2MlPMSHqLrFdO0ycJEHUrJIEGGYOsBA5SbWz2lKHWD9XIX21WvBlv2xpOMedFY7GA7uVrvmB0SO8RMAEY2lHDhWTFC6tednZHfgLby2WL4lqlTlWDbU=

Hello Jeremy,

Well, you have assumed an axiom here. It is quite possible to prove anything by assuming the
right (or wrong) axiom. 'Print Assumptions existT_inj.' shows what axioms you are relying on.

To understand what is going on you should study how the match operation works in coq. First
you could read the reference manual, more specifically the section
Calculus of Inductive Contructions/Inductive Definitions/Destructors. After that, try to
understand what you see when you do 'Print eq_rect.' After that you could try to construct
an injectivity lemma all by hand for pair. Next, try the same for a dependent type and notice
that you run into trouble.

Good luck,
Chris




Archive powered by MHonArc 2.6.18.

Top of Page