coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Jeremy Dawson <Jeremy.Dawson AT anu.edu.au>
- To: "coq-club AT inria.fr" <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] Why dependent type theory?
- Date: Wed, 4 Mar 2020 10:32:20 +0000
- Accept-language: en-US
- Arc-authentication-results: i=1; mx.microsoft.com 1; spf=pass smtp.mailfrom=anu.edu.au; dmarc=pass action=none header.from=anu.edu.au; dkim=pass header.d=anu.edu.au; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-SenderADCheck; bh=+jVx4aWpaDAkzaZV1Ja3EtERJT4Z8fsmpforxgklc7o=; b=PKM+Cva2Uzxr+QdqhFPTyh2HGwWrxubOZ7/LlnLMD0hhp6yIc3DloqkhrKGJfET4cXMO4kgUWlSfPgYbYmXo5eI9yJOVs1gl41K8jRZiBm5hkUSb92LHeZTbdVnyKZwpf04DEkfRxfnYVSffcvQE25vPqrdZHKLf++UzHioo1FyYGmjIOEvc3Glw9vfpgZ7Ce03b5eNcBq7lYGFzO/v1XclH69Bfck1ydEDMa9lK0Y3VGABW52RcPovXwtp2d4H29JwacUmldSMcHvf/dEwNotENiaR4+f02wSFILEoPaGohEBxsCPwyoejegRT9g9mFWeIiRQfc1DBa76VAhfXR1A==
- Arc-seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=fMXW9UOXsbcfTZot8WVeldwZclx3becG5mKvHy71MTIb5P3gbvjHMW+jV+kmcfYIKjniBBt0hWAs4DjrwZyN4YES2wyIZFYZ9/SvGC7DqZAoUG4X6TzzgYf7Hrt7IZElIeonjh5TPhXhC/bRnOiwzNRd5A6YdRUaCx1HL3cWUTN3rj7K8Coqa5Qpj39VGK9x9xNfh9TdhvVdiTMCrxm1p6ZG+MFtFMb9VF2aKprmijdEUo8oLdUD/u7pKdQCPnVIjxBNtFUlD39myiNNwix/LRxtCUpRnHkypTW7WfwT9qoTip66wY6aN8U8124TozXVhST8F4XjCax0UF22QQfTFg==
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=Jeremy.Dawson AT anu.edu.au; spf=Pass smtp.mailfrom=Jeremy.Dawson AT anu.edu.au; spf=Pass smtp.helo=postmaster AT AUS01-ME1-obe.outbound.protection.outlook.com
- Ironport-phdr: 9a23:ZsxfUhHEblBvQaNz2DIuqJ1GYnF86YWxBRYc798ds5kLTJ7zo82wAkXT6L1XgUPTWs2DsrQY0raQ6viwEjVdqb+681k8M7V0HycfjssXmwFySOWkMmbcaMDQUiohAc5ZX0Vk9XzoeWJcGcL5ekGA6ibqtW1aFRrwLxd6KfroEYDOkcu3y/qy+5rOaAlUmTaxe7x/IAi5oAnLq8UanYhvJqksxhbJv3BFZ/lYyWR0KF2cmBrx+t2+94N5/SRKvPIh+c9AUaHkcKk9ULdVEjcoPX0r6cPyrRXMQheB6XUaUmUNjxpHGBPF4w3gXpfwqST1qOxw0zSHMMLsTLA0XTOi77p3SBLtlSwKOSI1/H3Rh8dtiq9QvRCvqAFlw4PMYI+bKudwfr/Tc90ZS2pOXMdRWDBODIyzdIYPE/MBMPxEo4Xhu1cDrR2zDhSsCuP1zT9Ig2f706kk3OQ7Dw7G2QwhFM8AvnvOotT1L6ASUeaox6TPyTvMcelW1in46InIaBwvr+uDXLxrccrWz0kiDBnKjlONqYD/ITyay/kNv3KB4Op9TO+ijXMspQJpojW3ycoglpPFip8Jxl3G7yl13Yg4KNyiREJmb9OpH4Ncui6eOodsX88vQH1ktDwnxrAIo5K3YSkHxZshyhXCcfKIaZKI7QjmVOuJITd3mnZleLWnihuu/0eu1/HwWtSt3FhNoSRJj8DAtncW2BPN8MSHTeZ9/lu61jaIygDT7PxLLVoslarBLJ4h3qA/mYYPsUTCGS/2nl/6jKiLdkU4/uio7OPnYrb8qpCAMI90jxnyMqUomsOhHeQ1KgcDU3SB9eihyLHu/1f1TKhEg/A3iKXVrZ7XKMsDqq68GQBV04Ij6xilDzeh1dQVhX0JI0xfeB2ZiojoO0vCLv7iAvaxmFSslzFryuvcMb3nH5XBNGbMn6r8fbpn8UFc1RI/zcpD6JJMFrEBPPXzV1ftu9zfFx81KhC7w+L6CNpmzY4eQmKOAqqBMKzIq1OI5+QvI/ONZIAPojr9JeIltLbSiipzklgEOKKtwJE/aXaiH/0gLV/TKS7nhc5EGmMXtCI/SvbrgRuMS2gASWy1Wvce6ys2DZPuIY7cXYeryOij0T22G4wQSmlZEVeKOX7uasOJV+pKYT/EcZwpqSANSbX0E9xp7hqprgKvk+M2fNqRwTURsNfY7PYw4uTSkR8o8jktVZaU1XzLQm1p2GoVFWZvgPJP5Hdlw1LG6pBWxuRCHIUJtfpPT0E3OYOaxvEoU4mvCDKERc+ATROdevvjATw1SY5ukfYzWB4kXvCP11XE1SfsBKIJnbuWApBy6rjbw3X6O8d6zTDBybUliF4lBMBIMD//iw==
On 4/3/20 6:52 pm, Guillaume Melquiond wrote:
> In a HOL setting (or plain FOL for McCarthy's F91), types are never
> empty, so functions always exist and return values, whether terminating
> or not. (Obviously, if they do not terminate, you will not be able to
> prove anything interesting about their return value.)
I'd call this true but misleading. I would say that a function that
does not terminate does not in fact exist. If it did, we would have the
following logical paradox (the code is SML, basically simply type theory)
(** Grelling paradox -
a word expresses a property, which may or may not apply to that word,
eg 'English' is an English word, 'short' is a short word,
'French' is not a French word, 'long' is not a long word,
define a word to be heterological if it does not truly describe itself;
paradox : is the word 'heterological' heterological ? **)
type word = string ;
type property = word -> bool ;
(* prop : word -> property, gives the property expressed by a word
heterological : property *)
fun prop "heterological" = heterological
and heterological wd = not (prop wd wd) ;
(* the paradox is to evaluate heterological "heterological" *)
(* heterological "heterological" ; ! Uncaught exception: ! Out_of_memory *)
Jeremy
- Re: [Coq-Club] [Agda] [lean-user] Re: Why dependent type theory?, (continued)
- Re: [Coq-Club] [Agda] [lean-user] Re: Why dependent type theory?, Thorsten Altenkirch, 03/12/2020
- Re: [Coq-Club] [Agda] [lean-user] Re: Why dependent type theory?, Mario Carneiro, 03/13/2020
- Re: [Coq-Club] [Agda] [lean-user] Re: Why dependent type theory?, Kevin Buzzard, 03/13/2020
- Message not available
- Message not available
- Re: [Coq-Club] [Agda] [lean-user] Re: Why dependent type theory?, Bas Spitters, 03/17/2020
- Message not available
- Message not available
- Message not available
- Re: [Coq-Club] [Agda] [lean-user] Re: Why dependent type theory?, Thorsten Altenkirch, 03/18/2020
- Re: [Coq-Club] [Agda] [lean-user] Re: Why dependent type theory?, Thorsten Altenkirch, 03/12/2020
- Re: [Coq-Club] [Agda] [lean-user] Re: Why dependent type theory?, Stefan Monnier, 03/15/2020
- Re: [Coq-Club] Why dependent type theory?, Guillaume Melquiond, 03/04/2020
- Re: [Coq-Club] Why dependent type theory?, Dominique Larchey-Wendling, 03/04/2020
- Re: [Coq-Club] Why dependent type theory?, Pierre Courtieu, 03/04/2020
- Re: [Coq-Club] Why dependent type theory?, Jeremy Dawson, 03/04/2020
- Re: [Coq-Club] Why dependent type theory?, Dominique Larchey-Wendling, 03/04/2020
- Re: [Coq-Club] Why dependent type theory?, Makarius, 03/04/2020
- Re: [Coq-Club] Why dependent type theory?, Pierre-Marie Pédrot, 03/04/2020
- Re: [Coq-Club] Why dependent type theory?, Thorsten Altenkirch, 03/04/2020
- Re: [Coq-Club] Why dependent type theory?, Dominique Unruh, 03/04/2020
- Re: [Coq-Club] Why dependent type theory?, Jeremy Avigad, 03/04/2020
- Re: [Coq-Club] [Agda] Why dependent type theory?, Ettore Aldrovandi, 03/04/2020
- Re: [Coq-Club] [Agda] Why dependent type theory?, Miguel Pagano, 03/05/2020
Archive powered by MHonArc 2.6.18.