Skip to Content.
Sympa Menu

coq-club - RE: [Coq-Club] Non standard natural numbers

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

RE: [Coq-Club] Non standard natural numbers


Chronological Thread 
  • From: Marc Hermes <hermesmarc AT gmail.com>
  • To: "coq-club AT inria.fr" <coq-club AT inria.fr>
  • Subject: RE: [Coq-Club] Non standard natural numbers
  • Date: Mon, 7 Jun 2021 17:05:19 +0200
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=hermesmarc AT gmail.com; spf=Pass smtp.mailfrom=hermesmarc AT gmail.com; spf=None smtp.helo=postmaster AT mail-ed1-f45.google.com
  • Ironport-hdrordr: A9a23:s2bXKqDrrIKLEJHlHei4sceALOsnbusQ8zAXPh9KJCC9I/bzqynxpp8mPEfP+VAssOlJo6HIBEDyewKkyXcT2/hYAV7CZniRhILGFvAH0WKP+Vzd8k7Fh6VgPMVbAs9D4bTLZDAX4qjHCWKDYrUdKay8gcWVbJDlvhVQpG9RC51I3kNcMEK2A0d2TA5JCd4SD5yH/PdKoDKmZDA+ctm7LmNtZZmPm/T70LbdJTIWDR8u7weDyRmy7qThLhSe1hACFxtS3LYZ93TfmQCR3NTujxj78G6T64efh64m1+cJ+OEzRPBkufJlaQkEvzzYJbiIA9W5zXIISa+UmRMXeZL30m8d1oxImgjslyeO0FHQMqXboUcTAzuL8y7nvZOnyfaJPg7SJvAx976xSCGpnnbIt+sMpJ6i9Aqixudq5Db77VPADvTzJmFXfxCP0AUfeMYo/g9iuat3Us4skbAi
  • Ironport-phdr: A9a23:Es0R0hcWB6Ba+LCRIPcO+H7IlGM+Cd7LVj580XLHo4xHfqnrxZn+JkuXvawr0AaYG96DtLka1qL/iOPJYSQ4+5GPsXQPItRndiQuroEopTEmG9OPEkbhLfTnPGQQFcVGU0J5rTngaRAGUMnxaEfPrXKs8DUcBgvwNRZvJuTyB4Xek9m72/q99pHOZwhEnjSwba9wIRm5rAjcttQdjJd/JKo21hbHuGZDdf5MxWNvK1KTnhL86dm18ZV+7SleuO8v+tBZX6nicKs2UbJXDDI9M2Ao/8LrrgXMTRGO5nQHTGoblAdDDhXf4xH7WpfxtTb6tvZ41SKHM8D6Uaw4VDK/5KhsVRHolTwHNyYn/27Llsx+gqVboBe7qBx+xY7ffYWZOfV6c6/Ye94RWGhPUdtLVyFZDYyyYYsBAfcDMuhboYnzuVQAogelCAmsHePvzyNEimPq0aA41ekqDAHI3BYnH9ILqHnaq8/6NL0OXuuozqfH0y/Db/ZI1jfm9YPFdRAhru+WXbJ1b8XR0kwvGBnfjlqMsoHlMDaV2f4Ms2if9eZvSeWvi2s+pgx3vzOgydsihJPTiYIJ1lDL6z95wIAtKNC7VkN2fN+pHZhSui2EKod6Xt8uTm5ptSs5ybALuJG2cTUExZkk2hPSavOKfoeH7x/9SuqfLyt0iW9kdb+ihRu/91WrxOP7VsmxyllKryxFn8HDtnAMyxzT6tWHReBn8keg3jaC0R3Y5OJcIU0si6bXN5oszqQzm5cTq0jPADP6lUbsgKKZdkgo4vWk5urob7n8opKRNpV4hhz9P6kvgMCzHOA1Pw4TVGaB4+u8zqfs/UjhTbVKkPI2lq7ZvYjfJcsBp665BxZZ3Zg+5BqiFjum3tsVkHkdIFJKfxKHiIfpO1XQL/ziEfi/hFGsnC9qx/DAILLhHo3AImbfnLrlZ7pw6E5RxBAtwdxD5J9YEL4MLfLrVk/0rtPYDxs5MwKuw+bgDdVwzoMeVnyVAq+cLqzSqlqI6fg1I+aQf4IVtzP9JOIk5/7ql3M2hVgdfayx0ZsNdH+4BuhmI1meYXf0ntgBFn4KshMiQ+zulV2NSiVeZ22yXqI5/jE0EpiqDYbFRoC3gbyOxj23HpNMZjMONlfZW3zvbsCPX+oGQCOUOM5o1DIeH/D1QIg4kBqqqQXSyrx9L+OS9DdO5rz5090gwuTJnlkS+CZxAt/Vh2GAVWR5hWYBXTQe06V2oEg7wVCGh/sry8dEHMBesqsaGjwxMoTRmrArYzgdcg3Ed9aNDl2hR4f/adnUZt00yt4KJU16Hof65vgi9y+jArtQmrDSQZJor+TT2H/+I8s7wHHDhvFJsg==

I am not sure why the name  is justified. At least I don’t see why ' enjoys induction; which any model of PA  should have.

 

Marc Hermes

 

From: Slavomir Kaslev
Sent: Monday, 7 June 2021 16:41
To: coq-club AT inria.fr
Subject: Re: [Coq-Club] Non standard natural numbers

 

It's possible to give a constructive description a such a term c of type non-increasing binary sequences and then prove c_gt0 and c_non_standard (sorry of using Lean on the list):

def ' := Σ' a : → fin 2, Π n : , a (n + 1) ≤ a n

def lt (a b :
') : Prop := n : , a.1 n < b.1 n
instance : has_lt
' := lt

def zero :
' := λ n, 0, λ n, by rw fin.le_def
instance : has_zero
' := zero

def adjoin {A} (x
: A) (f : → A) : → A
| 0 := x

| (n+1) := f n

def fin2_le_1 (x : fin 2) : x ≤ 1 := nat.le_of_lt_succ x.2

def succ (a :
') : ' := adjoin 1 a.1, λ n, begin
induction n,
{ apply fin2_le_1 },
{ apply a.2 }
end


def c :
' := λ n, 1, λ n, by rw fin.le_def

def c_gt0 : 0 < c := Exists.intro 0 nat.zero_lt_one

def c_non_standard (a :
') (h : a < c) : succ a < c :=
begin
induction h with n h,
existsi n + 1,
exact h
end


(live in browser version)

On Wed, Jun 2, 2021 at 10:54 PM Vincent Semeria <vincent.semeria AT gmail.com> wrote:
>
> Dear Coq club,
>
> Is it possible to axiomatize a term c : nat, such as c is greater than all standard natural numbers ? The first 2 lines are easy,
> Axiom c : nat.
> Axiom c_gt0 : 0 < c.
>
> But then, could we consistently add this axiom ?
> Axiom c_non_standard : forall n:nat, n < c -> S n < c.
>
> If the last axiom is not consistent, we could modify Coq's type checker to interpret all names of the form c_gtSSSS...S0 as closed terms of the corresponding types SSSS...S0 < c. I am pretty sure that these terms are consistent, because if they introduced a proof of False, that proof would be a finite lambda-term with only a finite number of these c_gt terms. Then c could be replaced by the greatest of these terms, and we would obtain a proof of False in basic Coq.



--
Slavomir Kaslev

 




Archive powered by MHonArc 2.6.19+.

Top of Page