coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Slavomir Kaslev <slavomir.kaslev AT gmail.com>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] Non standard natural numbers
- Date: Mon, 7 Jun 2021 17:40:34 +0300
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=slavomir.kaslev AT gmail.com; spf=Pass smtp.mailfrom=slavomir.kaslev AT gmail.com; spf=None smtp.helo=postmaster AT mail-lj1-f171.google.com
- Ironport-hdrordr: A9a23:fLhcK69coYXfFXGH9fBuk+DhI+orL9Y04lQ7vn2ZKCYlC/Bw8vrFoB11726QtN98YgBDpTnEAtjifZq+z/9ICOsqTNOftWDd0QPCEGgh1+vfKlbbakrDH4BmpMFdmmtFZOEYz2IWsS832maF+h8bruW6zA==
- Ironport-phdr: A9a23:3N9/4B/FJC/wFf9uWZG8ngc9DxPPW53KNwIYoqAql6hJOvz6uci7bQqEvaom0gKBdL6YwsoMs/DRvaHkVD5Iyre6m1dGTqZxUQQYg94dhQ0qDZ3NI0T6KPn3c35yR5waBxdq8H6hLEdaBtv1aUHMrX2u9z4SHQj0ORZoKujvFYPeksC62/q89pHPYQhEizuwbLNvJxiqsAvdsdUbj5F/Iagr0BvJpXVIe+VSxWx2IF+Yggjx6MSt8pN96ipco/0u+dJOXqX8ZKQ4UKdXDC86PGAv5c3krgfMQA2S7XYBSGoWkx5IAw/Y7BHmW5r6ryX3uvZh1CScIMb5Sq06WSm576dzVhDnlDsHOTA+8GHSkMNwjaRbqw+lqxFwx4PYZYeYP+d8cKzAZ9MXXWVOXshTWCJBDI2ybJYBAfQdMutDtYbxu0EDoAGiCQWwBu7izCJDiH/s3a091uQsCRzI3Ag6ENIQt3TUqdT1NL0PWu6w1qbI1jHDYO1I2Tzg74XIaRQhruuSXbJ3dMrRyFMvGxnGjlqKsozlOy2a1voWvmiU6upvT+Ovi2o9pw5tpTivw94hh4/UjY0a1l7K7z92wJopJdKmUk57Z8apHZVQui+VNYZ7RswvTmNptSg117ELt5G2cigWxJko2xLSdeCLfoyU7x/gSeucLip1inxldr++hhu88Uatx+LzWMSyzV1EoC1FktzWuXAM0Rze8seHSvph/kehxDaAzBrf6uBDIU0yiKHVKIYhz6YumpYPtUnPBCz7lUXsgKOIakkp+fKk5/nlb7n7oJKXKpV6hRvkMqs0n8yyGeQ4PRYKX2ic4em80afs/Uz9QLlTiv02kLTVvInUJcgGpKO1HhVZ0okk6xa4ADem1MoXkWMbI1JCfRKLl4npO1fQL/DkFfqznUignTNxy/3FPrDtGIvBImTAnbv7YLpw6VNQxBI2zd9F5pJUDr8BIOj0Wk/0rNHYFRs5PBaqw+bgDdV915keVXiMAqCDK6PStUGH5vw0LumDYY8aojf9K/w/6/Hyin85nEcRfbO10psPdHC4AvNmLl2Fbnrrm9cNCHsFvg4jTOPxk1CCSj5SZ3OqX60m/D07CYSmDZ3CRo+3mrCB0j27TdVqYTVNDUnJGnP1fa2FXe0NYWScOJxPiDsBAIOlQpEm0BC0/Czz0L5qMKKA4SkRq5Xm1cIz5OTIkRws3TNxBsWZlWqKSjcnzSszWzYq0fUn8gRGwVCZ3P0k0pSw8PRc4vpIVkExMpuOl4SS5Pj9XwvAepGCT1P0G71O4Bk0R9M1htsMOgNzQor7yB/E2CWuDvkekLnZXPQJ
It's possible to give a constructive description a such a term c of type non-increasing binary sequences and then prove c_gt0 and c_non_standard (sorry of using Lean on the list):
def ℕ' := Σ' a : ℕ → fin 2, Π n : ℕ, a (n + 1) ≤ a n
def lt (a b : ℕ') : Prop := ∃ n : ℕ, a.1 n < b.1 n
instance : has_lt ℕ' := ⟨lt⟩
def zero : ℕ' := ⟨λ n, 0, λ n, by rw fin.le_def⟩
instance : has_zero ℕ' := ⟨zero⟩
def adjoin {A} (x₀ : A) (f : ℕ → A) : ℕ → A
| 0 := x₀
| (n+1) := f n
def fin2_le_1 (x : fin 2) : x ≤ 1 := nat.le_of_lt_succ x.2
def succ (a : ℕ') : ℕ' := ⟨adjoin 1 a.1, λ n, begin
induction n,
{ apply fin2_le_1 },
{ apply a.2 }
end⟩
def c : ℕ' := ⟨λ n, 1, λ n, by rw fin.le_def⟩
def c_gt0 : 0 < c := Exists.intro 0 nat.zero_lt_one
def c_non_standard (a : ℕ') (h : a < c) : succ a < c :=
begin
induction h with n h,
existsi n + 1,
exact h
end
(live in browser version)
On Wed, Jun 2, 2021 at 10:54 PM Vincent Semeria <vincent.semeria AT gmail.com> wrote:
>
> Dear Coq club,
>
> Is it possible to axiomatize a term c : nat, such as c is greater than all standard natural numbers ? The first 2 lines are easy,
> Axiom c : nat.
> Axiom c_gt0 : 0 < c.
>
> But then, could we consistently add this axiom ?
> Axiom c_non_standard : forall n:nat, n < c -> S n < c.
>
> If the last axiom is not consistent, we could modify Coq's type checker to interpret all names of the form c_gtSSSS...S0 as closed terms of the corresponding types SSSS...S0 < c. I am pretty sure that these terms are consistent, because if they introduced a proof of False, that proof would be a finite lambda-term with only a finite number of these c_gt terms. Then c could be replaced by the greatest of these terms, and we would obtain a proof of False in basic Coq.
--
Slavomir Kaslev
def ℕ' := Σ' a : ℕ → fin 2, Π n : ℕ, a (n + 1) ≤ a n
def lt (a b : ℕ') : Prop := ∃ n : ℕ, a.1 n < b.1 n
instance : has_lt ℕ' := ⟨lt⟩
def zero : ℕ' := ⟨λ n, 0, λ n, by rw fin.le_def⟩
instance : has_zero ℕ' := ⟨zero⟩
def adjoin {A} (x₀ : A) (f : ℕ → A) : ℕ → A
| 0 := x₀
| (n+1) := f n
def fin2_le_1 (x : fin 2) : x ≤ 1 := nat.le_of_lt_succ x.2
def succ (a : ℕ') : ℕ' := ⟨adjoin 1 a.1, λ n, begin
induction n,
{ apply fin2_le_1 },
{ apply a.2 }
end⟩
def c : ℕ' := ⟨λ n, 1, λ n, by rw fin.le_def⟩
def c_gt0 : 0 < c := Exists.intro 0 nat.zero_lt_one
def c_non_standard (a : ℕ') (h : a < c) : succ a < c :=
begin
induction h with n h,
existsi n + 1,
exact h
end
(live in browser version)
On Wed, Jun 2, 2021 at 10:54 PM Vincent Semeria <vincent.semeria AT gmail.com> wrote:
>
> Dear Coq club,
>
> Is it possible to axiomatize a term c : nat, such as c is greater than all standard natural numbers ? The first 2 lines are easy,
> Axiom c : nat.
> Axiom c_gt0 : 0 < c.
>
> But then, could we consistently add this axiom ?
> Axiom c_non_standard : forall n:nat, n < c -> S n < c.
>
> If the last axiom is not consistent, we could modify Coq's type checker to interpret all names of the form c_gtSSSS...S0 as closed terms of the corresponding types SSSS...S0 < c. I am pretty sure that these terms are consistent, because if they introduced a proof of False, that proof would be a finite lambda-term with only a finite number of these c_gt terms. Then c could be replaced by the greatest of these terms, and we would obtain a proof of False in basic Coq.
--
Slavomir Kaslev
- Re: [Coq-Club] Non standard natural numbers, (continued)
- Re: [Coq-Club] Non standard natural numbers, Ralf Jung, 06/04/2021
- Message not available
- Re: [Coq-Club] Non standard natural numbers, Ralf Jung, 06/04/2021
- Re: [Coq-Club] Non standard natural numbers, Tadeusz Litak, 06/04/2021
- Re: [Coq-Club] Non standard natural numbers, Dominik Kirst, 06/04/2021
- Re: [Coq-Club] Non standard natural numbers, Thorsten Altenkirch, 06/05/2021
- Re: [Coq-Club] Non standard natural numbers, Vincent Semeria, 06/04/2021
- Re: [Coq-Club] Non standard natural numbers, Vincent Semeria, 06/07/2021
- Re: [Coq-Club] Non standard natural numbers, Slavomir Kaslev, 06/08/2021
- Re: [Coq-Club] Non standard natural numbers, Vincent Semeria, 06/08/2021
- Re: [Coq-Club] Non standard natural numbers, roux cody, 06/08/2021
- Re: [Coq-Club] Non standard natural numbers, Vincent Semeria, 06/08/2021
- Re: [Coq-Club] Non standard natural numbers, Slavomir Kaslev, 06/08/2021
- RE: [Coq-Club] Non standard natural numbers, Marc Hermes, 06/07/2021
Archive powered by MHonArc 2.6.19+.