coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Vincent Semeria <vincent.semeria AT gmail.com>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] Non standard natural numbers
- Date: Mon, 7 Jun 2021 17:04:47 +0200
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=vincent.semeria AT gmail.com; spf=Pass smtp.mailfrom=vincent.semeria AT gmail.com; spf=None smtp.helo=postmaster AT mail-ot1-f41.google.com
- Ironport-hdrordr: A9a23:TTYqVawf7c89t7VfDEAnKrPxOOskLtp133Aq2lEZdPULSKGlfpGV9sjziyWetN9IYgBHpTgZUJPwCE80hqQFmLX5Wo3SFDUO2VHYWr2KgrGSpwEIdxeeygc/79YqT0EdMqyWMbESt6+TjGbXLz9K+qjlzEncv5a6854bd3AJV0gP1WdEIzfeNnczaBhNBJI/GpbZzNFAvSCcdXMeadn+LmUZXsDYzue72a7OUFojPVoK+QOOhTSn5PrRCB6DxCoTVDtJ3PML7XXFqQrk/a+u2svLhiM0llWjoai/1bPau5R+7f63+4gowwbX+0WVjbFaKvy/VGhcmpDs1L9lqqiIn/5qBbUK15qYRBDPnfKq4Xir7N+D0Q6S9bfd6UGT3/AQAVoBerB8bK9iA2nkAnAbzaRBOalwrhakX7E+N2K8oM3Z3am+a/hHrDvFnZN5q59ts5V2a/psVFdwxbZvgH9oLA==
- Ironport-phdr: A9a23:QFunuB/zxn9z7f9uWYi8ngc9DxPPW53KNwIYoqAql6hJOvz6uci7bQqEvaom0gKBdL6YwsoMs/DRvaHkVD5Iyre6m1dGTqZxUQQYg94dhQ0qDZ3NI0T6KPn3c35yR5waBxdq8H6hLEdaBtv1aUHMrX2u9z4SHQj0ORZoKujvFYPeksC62/q89pHPYQhEizuwbLNvJxiqsAvdsdUbj5F/Iagr0BvJpXVIe+VSxWx2IF+Yggjx6MSt8pN96ipco/0u+dJOXqX8ZKQ4UKdXDC86PGAv5c3krgfMQA2S7XYBSGoWkx5IAw/Y7BHmW5r6ryX3uvZh1CScIMb5Sq06WSm576dzVhDnlDsHOTA+8GHSkMNwjaRbqw+lqxFwx4PYZYeYP+d8cKzAZ9MXXWVOXshTWCJBDI2ybJYBAfQdMutDtYbxu0EDoAGiCQWwBu7izCJDiH/s3a091uQsCQ7J3A0mH90SrnvUqsn1P7oPX++ryanH0y/Db/JM1jzg74XIbBEhofeQUr1ud8rR1VMjFxjbgVWVt4PlJTKV2f4WvmiU6upvT+Ovi2o9pw5tpTivw94hh4/UjY0a1l7K7z92wJopJdKmUk57Z8apHYVOuyyUM4Z7XMcvT310tCs11rAIuZ62cicExZopyRPSd/6KfYeG7B/iVOucPyt0iW55db+jhBu/7UauxOL8W8SyzV1EoC1FktzWuXAM0Rze8seHSvph/kehxDaAzBrf6uBDIU0yiKHVKIYhz6YumpYPtUnPBCz7lUXsgKOIa0ko5vKk5uv6brjgu5SSLZV7ihvkPaQrgsG/Afo3MgwJX2WD/OSzzrzj/UngTLVNkv06j7DVsJ7VKMgGvKK5DAhV0oEs6xa7ETiqysgXnX4CLF5deRKHiZbmO03WLfzmEfuyh06gnTRryvzcILHtH4nBImLMnbv8Zbp97lRTyAs3zdBR/ZJUDbQBLertWk/wstzXEgE2Mwqow+r9E9VyyIYeVnyVAq+YKqzfqlCI5uc1LOmNYI8ZoiryK/8g5/L2l382hUcdfbW13ZsQcH23AvNmI1yAbXXwhtcBDHwFsxElTO3qjV2CSSRca2yzX6I6/DE7CZipAZ3NRoC30/S923KwGYQTbWRbAHiNF23pfsOKQaQiciWXd/FglDcJU6TpcIIk2AuvvUeu1bthJefS5msDuJfuztl8z+LWnBA2szdzCpLOgCm2U2hokzZQFHcN16dlrBkhmz9rMIB9iv1cUNtPvrZHDl58OpnbwOh3Tdv1X1CZFj9mYFmjS9SiRzo2S4BoqzfrS0l4EtSmyBvE2njya4I=
That's an amusing way of defining numbers. But your c is the constant sequence at 1, so it does not seem to have a successor : it is not really a natural number.
On Mon, Jun 7, 2021 at 4:41 PM Slavomir Kaslev <slavomir.kaslev AT gmail.com> wrote:
It's possible to give a constructive description a such a term c of type non-increasing binary sequences and then prove c_gt0 and c_non_standard (sorry of using Lean on the list):
def ℕ' := Σ' a : ℕ → fin 2, Π n : ℕ, a (n + 1) ≤ a n
def lt (a b : ℕ') : Prop := ∃ n : ℕ, a.1 n < b.1 n
instance : has_lt ℕ' := ⟨lt⟩
def zero : ℕ' := ⟨λ n, 0, λ n, by rw fin.le_def⟩
instance : has_zero ℕ' := ⟨zero⟩
def adjoin {A} (x₀ : A) (f : ℕ → A) : ℕ → A
| 0 := x₀
| (n+1) := f n
def fin2_le_1 (x : fin 2) : x ≤ 1 := nat.le_of_lt_succ x.2
def succ (a : ℕ') : ℕ' := ⟨adjoin 1 a.1, λ n, begin
induction n,
{ apply fin2_le_1 },
{ apply a.2 }
end⟩
def c : ℕ' := ⟨λ n, 1, λ n, by rw fin.le_def⟩
def c_gt0 : 0 < c := Exists.intro 0 nat.zero_lt_one
def c_non_standard (a : ℕ') (h : a < c) : succ a < c :=
begin
induction h with n h,
existsi n + 1,
exact h
end
(live in browser version)
On Wed, Jun 2, 2021 at 10:54 PM Vincent Semeria <vincent.semeria AT gmail.com> wrote:
>
> Dear Coq club,
>
> Is it possible to axiomatize a term c : nat, such as c is greater than all standard natural numbers ? The first 2 lines are easy,
> Axiom c : nat.
> Axiom c_gt0 : 0 < c.
>
> But then, could we consistently add this axiom ?
> Axiom c_non_standard : forall n:nat, n < c -> S n < c.
>
> If the last axiom is not consistent, we could modify Coq's type checker to interpret all names of the form c_gtSSSS...S0 as closed terms of the corresponding types SSSS...S0 < c. I am pretty sure that these terms are consistent, because if they introduced a proof of False, that proof would be a finite lambda-term with only a finite number of these c_gt terms. Then c could be replaced by the greatest of these terms, and we would obtain a proof of False in basic Coq.
--
Slavomir Kaslev
- Re: [Coq-Club] Non standard natural numbers, (continued)
- Message not available
- Re: [Coq-Club] Non standard natural numbers, Ralf Jung, 06/04/2021
- Re: [Coq-Club] Non standard natural numbers, Tadeusz Litak, 06/04/2021
- Re: [Coq-Club] Non standard natural numbers, Dominik Kirst, 06/04/2021
- Re: [Coq-Club] Non standard natural numbers, Thorsten Altenkirch, 06/05/2021
- Re: [Coq-Club] Non standard natural numbers, Vincent Semeria, 06/04/2021
- Re: [Coq-Club] Non standard natural numbers, Vincent Semeria, 06/07/2021
- Re: [Coq-Club] Non standard natural numbers, Slavomir Kaslev, 06/08/2021
- Re: [Coq-Club] Non standard natural numbers, Vincent Semeria, 06/08/2021
- Re: [Coq-Club] Non standard natural numbers, roux cody, 06/08/2021
- Re: [Coq-Club] Non standard natural numbers, Vincent Semeria, 06/08/2021
- Re: [Coq-Club] Non standard natural numbers, Slavomir Kaslev, 06/08/2021
- RE: [Coq-Club] Non standard natural numbers, Marc Hermes, 06/07/2021
Archive powered by MHonArc 2.6.19+.