coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Thorsten Altenkirch <Thorsten.Altenkirch AT nottingham.ac.uk>
- To: "coq-club AT inria.fr" <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] Proving transitiviy of simple type system
- Date: Tue, 3 Oct 2023 08:39:04 +0000
- Accept-language: en-GB, en-US
- Arc-authentication-results: i=1; mx.microsoft.com 1; spf=pass smtp.mailfrom=exmail.nottingham.ac.uk; dmarc=pass action=none header.from=exmail.nottingham.ac.uk; dkim=pass header.d=exmail.nottingham.ac.uk; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=UDvSOee1/WSwH9IgcABomvRqBKnG1Ra74m3yDR5U6II=; b=GEhTCK/6z6OjN3UT+3xXsA4xZn9GMhD5bQNCcpDF/w/RuXelfbngyUflvexz2oS0ozrkWRnQNXkDDAQ82XJcXpxtDJDRZeo5g4SM9a0y6xRhrRbuDX3RsqkLv3iT726cgHfyD5jRyKe73pKZ3ASspbZ1AYf4DbfB66MD3+kceVI90TBxsbKvJdSO81hAKe0ZlUB+66jdca+rzPo4xqOyr8j5I88QOzDGJZ5gj3zoDObe48EHrKh5CgrgJGfnU92vJhuoinxhB8MUouI1vm8EEfbpzZPxkde40YUT8+x9y8pnxS/0O3K6AMMUsO0f6j5/KKsDQ15xJWT8BC3mwi3ikQ==
- Arc-seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=S6N52zNOZzD1AqQQE6I2kCbDYTmP3bZ0rXDlryTZHP51CAwpQeqPOzIcy3EkbZOrLhHWM06CGz8q2RkC6PEfxSBQ7pWfgg+IJtCwHAOAfBX3B8H5X+GfYkMtH1ZgxorvqAHum/NfJCQDB5CBWT/O2z8n3rhYq5+W2m/foJQrjWuZPtVjl0f+104FOe5OsArXTWnledyqDA6XXN5/CWv2Ec8HOpw8ky3osw9sZ3WA5IPtPatiWfgieQjugyHechXSzSia5p33lk8TMCgGgHdrkz13I3U31lVZtx6prhS+NuVdr183+l+32aUA88ZZnUngpCd2l5cse3otp0zB2nxKRw==
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=Thorsten.Altenkirch AT nottingham.ac.uk; spf=Pass smtp.mailfrom=Thorsten.Altenkirch AT nottingham.ac.uk; spf=None smtp.helo=postmaster AT smtp3.nottingham.ac.uk
- Ironport-data: A9a23:Vhp6k6lLEVn9KGzaglScLr/o5gxQIkRdPkR7XQ2eYbSJt1+Wr1Gzt xIcXT+CM6nfYmv0e4x2PNy190gFuZTcmt8wHAZprSEwQ1tH+JHPbTi7BhepbnnKdqUvb2o+s p5AMoGYRCwQZiWBzvt4GuG59RGQ7YnRGvymTrSs1hlZHWdMUD0mhQ9oh9k3i4tphcnRKw6Ws LsemeWGULOe82Ayajl8B56r8ks1562q4GhA5DTSWNgS1LPgvylNZH4gDfrpR5fIatE8NvK3Q e/F0Ia48gvxl/v6Io7Nfh7TKyXmc5aKVeS8oiI+t5uK3nCukhcPPpMTb5LwX6v4ZwKhxLidw P0V3XC5pJxA0qfkwIzxWDEAe81y0DEvFBYq7hFTvOTKp3AqfUcAzN1SMn0qOqM6/Nx6PkVO3 +YXeS0TYguq0rfeLLKTEoGAh+w4KdXzZ8UZvW18zDfWDf8jB5nIBbjJjTNa9G5q1oYUQa2YO 5ZfNGcHgBfoO3WjPn8rCJUkh/ulgD/WdyFVrlGUv6E3y27U0BBw1rftOd+Tc9fMWMY9ckOw+ D2YpzijXE9y2Nq3xjnGrFayh+7zwATdVqIdSqOyyNk3uQjGroAUIEZKCwfi+KPRZlSFc9lYM gkf/jckhbMj8VSiCNj7RRyx5nCe1iPwQPJLFvEis0eLzbbI4gCWBmEBCDdKLsEl3CMredA0/ mO3o8/uKx5pirCqbXK37LjFsC2+IgFAeAfuehQ4ZQcC5tDipqQ6gRTOUstvHcaJYjvdRW6YL 9ei8HlWulkDsSIY//jioQGZ2FpAsrCMF1Rvum07S0r/tlsRWWKzW2C/wXfxhcuswa6CS0WZ5 z4CnNSC7eYBDZiI0iWGBvgOdF1I2xpnGGOD6bKMN8B/n9hIx5JFVdwMiN2ZDBs1WvvogRezP CfuVfp5vfe/xkeCY65teJ6WAM8316XmHtmNfqmKP4QUPcEtL1LcpXoGiausM4bFzhREfUYXZ 8vzTCpQJSxKU8yLMRLpHb1HgOB1rszA7TqJFcCmp/hY7VZuTCXJF+tcaQHmghER7qqCrRmd7 tBeKcaQ0BRDQaX4bzXI9pQQRW3m3lBlba0aX/d/L7bZSiI/QD9JI6aIndsJJdc/94wLzbigw 51IchQFoLYJrSabclrih7EKQO+HYKuTWlpgYX11bQj5hyh7CWtthY9GH6YKkXAc3LQL5ZZJo zMtIq1s29wfG2iVyCdXdpTnso1peTKigA/EbWLvYyEyc9QkD0bF88PtNFmnviQfLDuFhe1nq Z2Z1yTfXcUiQSZmB53oc/6B9Q66kkUcv+NQZHH2BOdvVn/iyrU3FBypvMQLe5kNDT7h2gql0 x2nBEZEhOvV/K4w3tr7pYGFiIaLDuElJBJTIDTd5JmYKQ3f0GiHx7FaceeXfALyUHH/17Wia N50kdD9Eqwjt3Rbv7VsF41EyfoF2OLugLtB3yJYHHnvRHa6OINKe3Wp85FGifxQ++V/pwCzZ HOqxvBbHre4YOXeD18bIVseXNSpjP07tGHb0qUoHR/c+iRywbugVHdSNTmqjAh2DuN8EKEh8 NcblP8m0S6NoTt0DY/elQFRzXqGEVIYWaZ+tp06Pp7iujB29n58O67jGg3Ey7DRTeUUKUQ7A C6mtIybjZRm+0fyWX4SF3/M4OljuaozqC16lF8vGlDYtefG19kW3QJQ+wsZVg567AtK+MMtN 3lJN39aH7Sv/TBpjs0SB2yDHxxzXh2Z8Hesy2oYyTTQXmizd2n3NGZmE/28zEMY1GN9fzZg4 7CTzlj+YwvqZM3c2igTW1Zvjv7eEexK6QzJnf64E/S/H5UVZSTvhomsbzEqryTLLNwQhkqdg 8VX58d1NLPGMBAPr50BC4W10aoaTDaGLjdgRdBj5KY4InHOSgqt2DShK1GDRe0VHqbkqXSHM s1JIt5Dcz+c1yzU9zASOvMqEo9OxfUs4IIPR6PvKWs4qICglztOsqyB0gjlhWQufcdirtZlF KPVaAC5MzKxgVl6pjbzifdqa0uCXMk8RQzj3eqK3v0DOLAdvcpNL0wj8LuGkE+EEQlg/hnO5 VvIS4rLxekzkYhDm5beSKVDDT7pKeLiCb2B4SGoktF0ddiUG9z/hwAUjVjGPgptIroaXepsp 4mNqNLa2EDkvq48dnLwwb2tNvBuy52pfex1NsnXEiFrrRGaUpWx3ypZqnGKF5NZtfh8uO+lf lKcQ+mtf4c3X9x9+iVkWxJGGUxAN5WtP7bSngLjnfGiERNH7BfmKumg/nrXbW12UC8EFpn9K w3sscaV+dFqg9VQNSAAGs1ZLcd0EH37VYsiUu/Bhz2SI22ro1GF47XczEtqrXmBD3SfC8/17 K7UXhW0Jlz4pKjMy8ofqIBo+AEeCHFmm+QrY0YB4JhMhiunCHIdZ/EoWXnc5kq4TgSpvH05W N3MUIfmIT74QSwfNxP7/MjiWAifD+lIM9y/Oz9BE4Z4rcupLNvoPVej3n4ID7RKlv/Lyua7N dAY9X35O164ydd0Ro7/I9Sl1Px/yKqyKm0goCjAfg+bP/raKbMNyGBgGgVNXCmBGsqLiUajy a3Zg4xbaBnTdHMd2vqMt5KY9N/1cd8vI/gVgf+z/evi
- Ironport-hdrordr: A9a23:+c7/xqyFyBQ+7PNRCDjXKrPxkuskLtp133Aq2lEZdPULSKylfp GV/cjziyWbtN9IYgBepTnyAtj/fZq8z+843WB1B8bAYOCIghrSEGgP1/qH/9SkIVyDygc/79 YuT0EdMqyLMbESt6+Ti2PUf7lQoqjjzEnrv5ai854Hd3ANV0gU1XYANu/tKDwOeOApP+tfKL Osou584xawc3Ueacq2QlMfWfLYmtHNnJX6JTYbGh8O8mC1/H2VwY+/NyLd8gYVUjtJz7tn23 PCiRbF6qKqtOz+4gPA1lXU849dlLLau5p+7Y23+4gowwfX+0SVjbdaKvi/VfcO0aWSAWMR4Z rxStEbToNOAj3qDyeISFDWqnjdOX4Vmg/fIBmj8CLeiP28fiszD45ng59UGyGps3bI9esMo5 5jziaXsYFaAgjHmzm479/UVwtynk7xunY6l/UP5kYvGrf2RYUh5LD3xnklWKsoDWb/8sQqAe NuBMbT6LJfdk6bdWnQui1qzMa3Vno+Ex+aSgxa0/blngR+jTR81Q8V1cYflnAP+NY0TIRF/f 3NNuBtmKtVRsEbYKphDKMKQNexCGbKXRXQWVjia2jPBeUCITbAupT36LI66KWjf4EJ1oI7nN DbXFZRpQcJCjTT4A21rep2Gzz2MRGAtG7Wu7NjDrBCy8jBeIY=
- Ironport-phdr: A9a23:iSZFZByHhX1+/ljXCzInwlBlVkEcU1XcAAcZ59Idhq5Udez7ptK+Z hyZvqsm1AWBHd2Cra4e1ayO6+GocFdDyK7JiGoFfp1IWk1NouQttCtkPvS4D1bmJuXhdS0wE ZcKflZk+3amLRodQ56mNBXdrXKo8DEdBAj0OxZrKeTpAI7SiNm82/yv95HJbAhEmjmwbal8I Ri3ogndqtcaipZmJqot1xfFuHRFd/pXyG9yOV6fgxPw7dqs8ZB+9Chdp+gv/NNaX6XgeKQ4Q 71YDDA4PG0w+cbmqxrNQxaR63UFSmkZnQZGDAbD7BHhQ5f+qTD6ufZn2CmbJsL5U7Y5Uim/4 qhxSR/ojCAHNyMl8GzSl8d9gr5XrA6nqhdixYPffYObO+dkfq7Ffd0UW3dPXtpfWSJCDIOzb ZcAAOUaMOlCs4Xxu0EDoQeiCQSsAu7k1z9GhmXx3a0/y+kvDwHG3As6H9IVrHTbstP1P7oOX OCx0KnH0zPDb/BX2Tfn9IfIcg0qrPaSU7JwdsrR01IvFx/bgVWWs4DoIzeV1vgTvGid7OpgV PivhHInqwxqpDivwdssipXIhoITxVDE9T92wIMvKdKiVEF3e8OkEJhJuiycKoB5Td8sTXtyt yYm1r0Jp4S7fC4SxZknyBPTduCLfoyJ7xztVeucIDd1iXB4dLy/hRu88Uetx/D9W8Wo01tHo TZInNbRunwQ1hHe6syKR/h580qv2juC0R3Y5O9DIUAxj6XbKpghz6YqmZoQq0vPBCr2mF7wg aSLdUsk4vCl5/n5brjlvJOQKYB5hw/kPqkhlcGzG+Q1PwgWU2SF+OmwyLPu8EjkTLlWlPI7k 6zUvI3GKcgFo6O1HhVa3pom5hu6ETuqzNIVlmQdIl1fYhKIlY3pNknOIP/mCfe/hEyhkCxux /DaJr3sDI/BLn7EkLf9YbZ96khcyAUzzd9F4pJYEKsOL+7pVk/st9zUFh45MwqqzOb7ENhxy 50SVGGVDqOHP67fv0WE6+0gLuWWZIIYuC7xK/0/6P7viX85l0Udfa6s3ZYPdn64HvNmI1+CY XrwnNgBF30GsxY6TOz2llKCVz1TZ3eoX60g5jE2E4SmDYDfRoCxgbyB2ii7Hp1MaWBDEFyDC 2vne5+ZW/cPcC6SJNRunSQeVbe9U48hyQ2utAjixrZ6NubU4DEXtYr/1Nhp4O3ejQ099TttD 8iEz26NS3x0kXgTSj8t3KF/pFR9xU2Z3ah5hfxYD91T6OlTXgc0L56Ph9B9Xpr5XRuEddOUQ n6nRM+nCHc/VJh5l9QJegN2H8iophHFxSujRbEPwe+lHpsxp57c2GLqO8t7g1/CyKQnjFg8S csHYVGmgbRk6wXVQafNj0iflKewfqQ02inR6GaFwmqHuQdRW0htUvOWDjgkekLKoIGhtQv5R Li0BOF/WuMg4cuLK68RL8bskU0DX/D7ftLXf2O2nW60QxeO3LKFKoTwKC0GxCuILk8CnkgI+ GqecxAkD3Kdo2XEFyBjExTGZ1/h9+p/sni7Zkkz0x2LaUJh3r/z8xVTmP/PA+gL0Oc8sTw64 y5xAE772tvXD9SaoA80QKVbe8gh7VEB/GbFugp+P4arL4hkgUICcgJ4v0rrkRx8TJhDwoAxt H1/6g10JOqD1U9ZMTOV2ZelIrrMNmz75wyicYbN303Gi5CQ/bsT6fI3q1zm+giiUFchm5l++ /9S1XbUppDDDQ5JFIn0Tl5y7B9i4bfTfig64YrQk3xqK6i99DHYiZovA6M+xxCscs06UuvMH RLuE8AcG8mlKfA701mvYBUeOelO9akyd8q4fvqC0aSvMa5uhjWjxWhA5Yl81AqL+U8eAqb03 5Ef2O2V2E2uUyvxilSgqMv3sYZDeS0TGGW/wC2iDYUXe64zNYcHBGGyItGmk81kjs2IOTYQ/ 1qiClUanc6xLEPIPxqngVYWiRhR/CH0/EnwhyZ5mDwosKeFiSnHwuC5MQECJnYOX256y1HlP YmzidkeGkmudQkg0hW/tiOYj+BWorpyK27LTAJGZS/zeiteUqyqraaPZYhm7I8ltyZWSu+8S VadVqL8pRQa2ialFmAY2TNxJFTI8t3p2gd3jm6QNiM5kHreY9psyBGZzdjASPhS3yANRAF+j iXLB16zP9Csu9yf0YrA+LPbNSrpRthYdi/lypmFvS2w6DhxABGxqPu0n8XuDQkw1SKTO8BCb SzTt168Z4Dq0///Kud7ZgxzA0e67cNmG4Z4m492hZcK2HFciI/HtXYAlG7yN51c18ecJDIxR TkR2MLY5k7M3FFuKHGI3Yn5fnOa3tdgYda6a2ZQ0yl78sMCBKqP7bNClDd4uRLh91KXO6Qm2 GtBj6ZzjRxSy+gS8BIg1CCcHqwfEQFDMCrgmg7Jp9GyoaNLZXq+JL251U5wh9ekX9Tg6klXX Hf0fItnHDclt58vdgiQizuvtse5JYq1D5pbrBCfnhbegvIALZswkqFPni97ISfmumVjzecnj Bto1JX8vY6dKmwr8rjqZ3wQfjDzec4X/SngyKhEmcPDlbyvGY96BjgNGrLsUf+uEzMIvvTPM QGSDDw6pXeSHPzWFkmC6w01yhCHW4DuLHyRKHQDmJ9eRB6HP1BShkY9WCk3mJ04DAuq7Mrmb Ft44D8R71u+oxAK1+EiZHydGi/P4QyvbDkzUp2WKhFbuxpD60niOsub9utvHitc887pvEmXJ 2ecfQgNEXARVxnOGQX4Jrf3r4qlkaDQFq+kIvDJe7nLteFOS6LC28e0yoU/tzeUapfWZCkkV aFgnBYfGy0kU8XBx2dWEXxRzX6WKZTB/FHip0gV5oi+6Ki5BFqptNHJU/0KdowysxGu3fXeb qjMwnkjb24fjM9ExGeUmuVGmgNU1HsoL373TdFi/WbMVP6Cx/YRUlhLM2Urc5EXp6MkglsQY IiHzIOtkOY/1KF9Ck8ZBwy73JvxPIpQfyfgbjalTA6KLOjUeGGNmZumJ/n6EOMNxORM60/q4 GzdThSlbmvFymKhVgjzY7gd0GfEZ1oO/t76KUwIayCrTcq6OEDndoUr1Xtuh+Vz3yOCNHZAY 2EkLwUR8fvJtGUC2q83GnQdvCo0a7PYy2DHtK+Bd8Zz07MjAzwoxbILpi5mm/0Lt2cdH6Q9m TOO/II25Qj+za/XjGIgCUQGqy4X1t/R+xw6YeOBsMEHACqhnlpF7H3MWU1S+505VZu3/fgXk 4eHlbqvem4TopSNrI1EQZCTcpvPMWJ9Y0O3QniEXE1ZC2bsbzq65QQVkenOpCDP6MNi7MG3w NxUEuYTVURpRKJATBk/WoVbe9EuAGNB8/bTjcgD4WeyoUvmX91U5sifDqrKWbPpLyqFjL9LZ xINh7rza5kQfpvy30goArVjtKLNHUeYHdVEoyk6KxQxvF0I639mCGs6x0PibAqppn4VD/+92 BAs2EN4Zqw2+THg7k1SRBKCrTYskEQ3hdTugCyAOD/3IqCqWIhKCi3y/0EvO5L/SgxxYEW8h 0thfDvDQrtQifNnewUJwEfEvoBTHPdHUaBeSAQV2enMIfMvzUhdrCqnzEoB7OCDFJgj3Aomf Jiwrm5RjgJuaNlmQM6YbKFNz1VWmuePpnrxjLB3mlNFYRpRtj7PK0tq8AQSO7IrJjSl5Llp4 A2GwH5YfXQUEuEturRs/188POKJy2Th1aRCIwa/Lb/6TevRtm7emMqPWl512FkPkhwPwbhxy 9w/fkzSfkQzwb2SFg4CNeLELh1Jbsxd9HHWOy+F9/jOi8EQXc31BqXzQOmCubxByFqjBxosF p8Q494pBZywyBqeK8D7ML8DxhUk4ULiLxOYD74aHXDD2CdCqMa5wpht2IBbLTxIGmRxPxK84 bPPrxMriv6OND/ZSnEdQpcFMH02Ucj8kiUfoncSVVFfM8oCzRSatHn6oTjMDT/zb9NmIv6fI w5vWoneEdAX9a+qlV/R/ZXXIifzPpJ/uY2Xgd4=
- Ironport-sdr: 651bd32b_chWFDVMCi8a2hft1XKZEbLuZ4ZPU1bCANtyYVwrKziaHR5x 3CSR4dCQIOr3cBs/UtGZOFHz52YD0Cu8RbCcd9A==
Isn’t your subtyping relation just equality of types?
Thorsten
From: coq-club-request AT inria.fr <coq-club-request AT inria.fr> on behalf of Frederic Fort <frederic.fort AT inria.fr>
Hello,
I am trying to prove the some facts about the type system of a simple Lambda calculus. However, I struggle to prove the transitivity of the subtype relation. I have seen in papers that certain people simply "axiomatize" properties like transitivity and reflexivity by defining specific rules for these properties. However, I find this inelegant as this makes proofs in other places more "cluttered" due to the additional constructors. I have a few proofs that work fine. For transitivity however, I am stuck. I have tried all kinds of (dependent) induction approaches, but I am generally stuck either because Coq requires me to prove that the unit type is a subtype of a function type or because the induction hypothesis doesn't take into account that subtyping of function input types is in the "opposite direction".
I suppose that there is some "Coq trick" that I am unfamiliar with (maybe I have to define a custom induction scheme ?). Or maybe it is actually impossible to prove transitivity like that.
If somebody could show me what I am missing, I'd be grateful.
Yours sincerely, Frédéric Fort
Here are my definitions: Inductive expr :=
Inductive type :=
Inductive typeSub : type -> type -> Prop :=
|
- [Coq-Club] Proving transitiviy of simple type system, Frederic Fort, 10/02/2023
- Re: [Coq-Club] Proving transitiviy of simple type system, Jason Hu, 10/02/2023
- Re: [Coq-Club] Proving transitiviy of simple type system, Lasse Blaauwbroek, 10/02/2023
- Re: [Coq-Club] Proving transitiviy of simple type system, Frederic Fort, 10/02/2023
- Re: [Coq-Club] Proving transitiviy of simple type system, Jason Hu, 10/02/2023
- Re: [Coq-Club] Proving transitiviy of simple type system, Frederic Fort, 10/02/2023
- Re: [Coq-Club] Proving transitiviy of simple type system, Jean-Marie Madiot, 10/02/2023
- Re: [Coq-Club] Proving transitiviy of simple type system, Lasse Blaauwbroek, 10/03/2023
- Re: [Coq-Club] Proving transitiviy of simple type system, Jason Hu, 10/03/2023
- Re: [Coq-Club] Proving transitiviy of simple type system, Lasse Blaauwbroek, 10/03/2023
- Re: [Coq-Club] Proving transitiviy of simple type system, Jason Hu, 10/03/2023
- Re: [Coq-Club] Proving transitiviy of simple type system, Lasse Blaauwbroek, 10/03/2023
- Re: [Coq-Club] Proving transitiviy of simple type system, Thorsten Altenkirch, 10/03/2023
- Re: [Coq-Club] Proving transitiviy of simple type system, Xavier Leroy, 10/03/2023
Archive powered by MHonArc 2.6.19+.