Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Re: Agda beats Coq

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Re: Agda beats Coq


chronological Thread 
  • From: Arnaud Spiwack <Arnaud.Spiwack AT lix.polytechnique.fr>
  • Cc: Xavier Leroy <Xavier.Leroy AT inria.fr>, Aaron Bohannon <bohannon AT cis.upenn.edu>, Dan Doel <dan.doel AT gmail.com>, Agda mailing list <agda AT lists.chalmers.se>, coq-club <coq-club AT pauillac.inria.fr>
  • Subject: Re: [Coq-Club] Re: Agda beats Coq
  • Date: Mon, 24 Nov 2008 22:51:01 +0100
  • Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=message-id:date:from:user-agent:mime-version:cc:subject:references :in-reply-to:content-type:content-transfer-encoding:sender; b=iNOpS74I+Ias3Z1UC+QoizFiquQMZAqoYzC174Yjb6yZhOPLZM5zni7Cvwdbx2VZVZ +6AM79pvXpQ1cE5Al3cNAtbaFZSTq9DArlTgb1IWxbM/XWXvZs+EvhYNSCsej+e1e4Hg 1H0fEGzcN7mk7uv4g/ngqn+bz3HeLB0ylzeNs=
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

As hour being late, I wasn't being as clear as I should. I meant that bisimilarity implies intentionnal equality *in Coq* (and so it does in Agda2 if I'm not mistaken). But this doesn't close the case. (as I was saying I personnally believe we shouldn't have this property).


Arnaud Spiwack

Arnaud Spiwack a écrit :
As a matter of fact, the most natural bisimalirity on streams does imply intentionnal equality. Which can be considered quite useful, but I've got the feeling it's not a good idea. This is actually what makes that Coq conversion is not decidable or Coq doesn't have subject reduction (choose whichever you want). There are quite some metaphysical issues here. ITT, ETT, OTT, whichever intermediate alternative, Impredicative, Predicative, ... There is enough to fight over all night long.


Arnaud Spiwack

Xavier Leroy a écrit :
Aaron Bohannon wrote:

[...] That is, may I safely assert that a standard definition of
bisimilarity on a coinductive data type implies the default
(intensional) equality ("=")?  (I don't know if this question is
relevant to Agda.)

Thanks for raising this question, as I've been wondering about it for
a while.

Let me take streams (infinite lists) as a concrete example of
coinductive datatype.  My (limited) understanding is that you could
make a set-theoretic model of streams where a stream of A is a
function nat -> A, so your property would amount to function
extensionality, which holds in this model.  However, I'm pretty sure
that if you assert function extensionality as an axiom in Coq, you
still cannot prove the extensionality property over streams stated
above...

Expecting more informed replies from true logicians,

- Xavier Leroy

--------------------------------------------------------
Bug reports: http://logical.futurs.inria.fr/coq-bugs
Archives: http://pauillac.inria.fr/pipermail/coq-club
          http://pauillac.inria.fr/bin/wilma/coq-club
Info: http://pauillac.inria.fr/mailman/listinfo/coq-club








Archive powered by MhonArc 2.6.16.

Top of Page