coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Thomas Th�m <thomas.thuem AT st.ovgu.de>
- To: "'Coq Club'" <coq-club AT pauillac.inria.fr>
- Subject: [Coq-Club] Properties on mutual definitions
- Date: Wed, 9 Dec 2009 12:26:50 +0100
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Hi all,
I was wondering how to create a useful induction principle to prove
properties on mutual definitions. It is clear how to generate induction
principles for mutual definitions, but I cannot apply them in my case. I
could imagine to write an induction principle by hand, but hopefully there
is an automatic way?
Thanks,
Thomas
-----
Require Export List.
Inductive exp : Type :=
| e_var : nat -> exp
| e_meth : exp -> nat -> list exp -> exp.
(* For simplicity, only identical expression (lists of expressions) are in
the relation f (g). *)
Inductive f : exp -> exp -> Prop :=
| f_var : forall n,
f (e_var n) (e_var n)
| f_meth : forall a a' l l' n,
f a a' ->
g l l' ->
f (e_meth a n l) (e_meth a' n l')
with g : list exp -> list exp -> Prop :=
| g_nil :
g nil nil
| g_cons : forall a a' l l',
f a a' ->
g l l' ->
g (a::l) (a'::l').
Scheme f_ind2 := Minimality for f Sort Prop
with g_ind2 := Minimality for g Sort Prop.
Combined Scheme fg_mutind from f_ind2, g_ind2.
Fact total :
( forall a, exists a', f a a' ) /\
( forall l, exists l', g l l' ).
Proof.
(* fg_mutind cannot be applied... *)
- [Coq-Club] Properties on mutual definitions, Thomas Thüm
- Re: [Coq-Club] Properties on mutual definitions,
Adam Chlipala
- Re: [Coq-Club] Properties on mutual definitions, Thomas Thüm
- Message not available
- Re: [Coq-Club] Properties on mutual definitions,
AUGER
- Re: [Coq-Club] Properties on mutual definitions,
muad
- Re: [Coq-Club] Properties on mutual definitions,
Adam Chlipala
- [Coq-Club] Properties on mutual definitions,
Thomas Thüm
- Re: [Coq-Club] Properties on mutual definitions, Adam Chlipala
- Re: [Coq-Club] Properties on mutual definitions,
AUGER
- [Coq-Club] Properties on mutual definitions, Thomas Thüm
- [Coq-Club] Properties on mutual definitions,
Thomas Thüm
- Re: [Coq-Club] Properties on mutual definitions,
Adam Chlipala
- Re: [Coq-Club] Properties on mutual definitions,
muad
- Re: [Coq-Club] Properties on mutual definitions,
Adam Chlipala
Archive powered by MhonArc 2.6.16.