Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Properties on mutual definitions

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Properties on mutual definitions


chronological Thread 
  • From: Adam Chlipala <adamc AT hcoop.net>
  • To: Thomas Th�m <thomas.thuem AT st.ovgu.de>
  • Cc: coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club] Properties on mutual definitions
  • Date: Wed, 09 Dec 2009 17:23:50 -0500
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Thomas Thüm wrote:
Assume, we want to prove the two theorems A and B, where f and g are defined
mutually inductive.

A: forall a, exists a', f a a'
B: forall l, exists l', g l l'

First, I would prove A by assuming B using induction on a.

Second, I would prove B by assuming A using induction on l.

My question is, how do I do this in Coq?

I think you are looking for nested induction, as described here:
   http://adam.chlipala.net/cpdt/html/InductiveTypes.html#lab28





Archive powered by MhonArc 2.6.16.

Top of Page