Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Properties on mutual definitions

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Properties on mutual definitions


chronological Thread 
  • From: Adam Chlipala <adamc AT hcoop.net>
  • To: Thomas Th�m <thomas.thuem AT st.ovgu.de>
  • Cc: "'Coq Club'" <coq-club AT pauillac.inria.fr>
  • Subject: Re: [Coq-Club] Properties on mutual definitions
  • Date: Wed, 09 Dec 2009 10:26:26 -0500
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Thomas Thüm wrote:
Scheme f_ind2 := Minimality for f Sort Prop
with g_ind2 := Minimality for g Sort Prop.
Combined Scheme fg_mutind from f_ind2, g_ind2.

Fact total :
    ( forall a, exists a', f a a' ) /\
    ( forall l, exists l', g l l' ).
Proof.

(* fg_mutind cannot be applied... *)

This doesn't look like an opportunity to apply induction over [f] or [g], even in informal math. An induction principle _consumes_ an object of its associated type, while here you want to _produce_ such an object.





Archive powered by MhonArc 2.6.16.

Top of Page