Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Properties on mutual definitions

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Properties on mutual definitions


chronological Thread 
  • From: Thomas Th�m <thomas.thuem AT st.ovgu.de>
  • To: "'Adam Chlipala'" <adamc AT hcoop.net>, "'muad'" <muad.dib.space AT gmail.com>, "'AUGER'" <Cedric.Auger AT lri.fr>
  • Cc: <coq-club AT pauillac.inria.fr>
  • Subject: [Coq-Club] Properties on mutual definitions
  • Date: Wed, 9 Dec 2009 22:55:49 +0100
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Thanks for your answers. I cannot imagine how to use your ideas, when f and
g do not relate exactly identical expressions.

> For simplicity, only identical expression (lists of expressions) are in
the relation f (g).

Let me describe, how I would prove my theorem in informal math.

Assume, we want to prove the two theorems A and B, where f and g are defined
mutually inductive.

A: forall a, exists a', f a a'
B: forall l, exists l', g l l'

First, I would prove A by assuming B using induction on a.

Second, I would prove B by assuming A using induction on l.

My question is, how do I do this in Coq? (The "Fact ... with ..." looks
pretty close to what I need, but I couldn't get it working without a=a' and
l=l'.)

Thomas





Archive powered by MhonArc 2.6.16.

Top of Page