Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] How does the simpl. tactics behave?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] How does the simpl. tactics behave?


chronological Thread 
  • From: Adam Chlipala <adam AT chlipala.net>
  • To: Z <zell08v AT orange.fr>
  • Cc: coq-club <coq-club AT inria.fr>
  • Subject: Re: [Coq-Club] How does the simpl. tactics behave?
  • Date: Tue, 07 Sep 2010 13:03:20 -0400

Z wrote:
For your 2nd point
"we don't need unfold explicitely..."
which I take leave to doubt however:

For the following theorem, is there another way to
get around? (without unfold)

*****************
Definition gxx(x: nat) := match x with |_ =>0 end.
Theorem test000bis: gxx 0 = 0.
Proof. unfold gxx. Qed.
*******************

Yes.  Like I said before, [reflexivity] proves this theorem directly.



Archive powered by MhonArc 2.6.16.

Top of Page