Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Using Coq for formalization of mathematics

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Using Coq for formalization of mathematics


chronological Thread 
  • From: Adam Chlipala <adamc AT csail.mit.edu>
  • To: Vladimir Voevodsky <vladimir AT ias.edu>
  • Cc: Coq-Club Club <coq-club AT inria.fr>
  • Subject: Re: [Coq-Club] Using Coq for formalization of mathematics
  • Date: Sat, 24 Sep 2011 13:50:51 -0400

Vladimir Voevodsky wrote:
On Sep 24, 2011, at 1:34 PM, Adam Chlipala wrote:

Vladimir Voevodsky wrote:
It is arguable whether overusing induction and Prop is of any benefit for the 
type-theoretic formalization of mathematics. In my experience one can 
formalize everything with very few uses of [ Inductive ] and no use of Prop 
at all.

There are two questions here: inductive definitions vs. an impredicative 
universe.  I'm a believer in the usefulness of inductive definitions and 
increasingly a skeptic about the need for impredicativity.
Existence of a projection from any universe U to Prop defined by [ inhabited 
] ( an inductive definition ) is essentially equivalent to impredicativity of 
Prop.

Perhaps I don't understand some subtlety here. The alternative to Coq's impredicative Prop that I have in mind is dropping both Prop and Set, so that we only have a simple infinite Type hierarchy of predicative universes. (Is this what Agda does? That's been my impression.)



Archive powered by MhonArc 2.6.16.

Top of Page