Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Prove associativity of composition of relations

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Prove associativity of composition of relations


Chronological Thread 
  • From: scott constable <sdconsta AT syr.edu>
  • To: coq-club AT inria.fr
  • Subject: [Coq-Club] Prove associativity of composition of relations
  • Date: Wed, 11 May 2016 12:51:55 -0400
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=sdconsta AT syr.edu; spf=None smtp.mailfrom=sdconsta AT syr.edu; spf=None smtp.helo=postmaster AT smtp1.syr.edu
  • Ironport-phdr: 9a23:lnKyXBzwKibrRvXXCy+O+j09IxM/srCxBDY+r6Qd0ekTIJqq85mqBkHD//Il1AaPBtWKrasawLuP+4nbGkU+or+5+EgYd5JNUxJXwe43pCcHRPC/NEvgMfTxZDY7FskRHHVs/nW8LFQHUJ2mPw6anHS+4HYoFwnlMkItf6KuSt+U1pr8hrn60qaQSjsLrQL1Wal1IhSyoFeZnegtqqwmFJwMzADUqGBDYeVcyDAgD1uSmxHh+pX4p8Y7oGwD884mosVHSODxe7kyZb1eFjUvdW4vt+PxshyWVgCI+mdUWWIQiQZBCQzIpEXhUpz2tDDmv8JmyTPcMMHrG+NnEQ++5rtmHUe7wBwMMCQ0pTna

Hi All,

I have the following definition of composition:

Inductive Compose : T → V → Prop :=
| comp_intro : ∀ x y z, R1 x y → R2 y z → Compose x z.

Notation "P ∘ R" := (Compose R P) (at level 55, right associativity).

And I am hopelessly lost as to how to prove this theorem:

Lemma compose_assoc : ∀ (R : U → V → Prop) (Q : V → T → Prop)
                          (P : T → W → Prop), P ∘ Q ∘ R = (P ∘ Q) ∘ R.

Any help would be extremely appreciated!

Thanks in advance,

~Scott Constable



Archive powered by MHonArc 2.6.18.

Top of Page