Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Prove associativity of composition of relations

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Prove associativity of composition of relations


Chronological Thread 
  • From: Frédéric Blanqui <frederic.blanqui AT inria.fr>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Prove associativity of composition of relations
  • Date: Wed, 11 May 2016 19:00:35 +0200

Hello. You will find useful developments on relations in CoLoR.Util.RelUtil.v (coq-color on opam). See http://color.inria.fr/doc/CoLoR.Util.Relation.RelUtil.html for the definitions and theorems without the proofs. Best regards, Frédéric.

Le 11/05/2016 18:51, scott constable a écrit :
Hi All,

I have the following definition of composition:

Inductive Compose : T → V → Prop :=
| comp_intro : ∀ x y z, R1 x y → R2 y z → Compose x z.

Notation "P ∘ R" := (Compose R P) (at level 55, right associativity).

And I am hopelessly lost as to how to prove this theorem:

Lemma compose_assoc : ∀ (R : U → V → Prop) (Q : V → T → Prop)
(P : T → W → Prop), P ∘ Q ∘ R = (P ∘ Q) ∘ R.

Any help would be extremely appreciated!

Thanks in advance,

~Scott Constable




Archive powered by MHonArc 2.6.18.

Top of Page