coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Jason Hu <fdhzs2010 AT hotmail.com>
- To: "coq-club AT inria.fr" <coq-club AT inria.fr>
- Subject: RE: [Coq-Club] Formalization of the syntax of first-order logic: binders
- Date: Tue, 12 Oct 2021 02:13:13 +0000
- Accept-language: en-CA, en-US
- Arc-authentication-results: i=1; mx.microsoft.com 1; spf=none; dmarc=none; dkim=none; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=u+qGAhIY1C4+kKzHkRZwzW/b7d5AVJMXu8JwHNUtaxU=; b=MA3eAEzkbwsmGW5DuV6jjsLUHn/rDQEvgyyYfCo9r/ZazxuLWpwyX94oulNTrhYd4gcSXgqtVOdowL1ZMC1DVZyOiYhWIy09laYIoIrB0cVvzpeIEPRwUTiocc3uYuU9Cd/KFYMzchmXul5x6gieNgO0itwCG3M+4SrFpyxGoRisIn2nsGyFW4vCIqLQ/U5YoH4gpgPXlC+MnvFx7f+p10ewHfnhhvIRvha0uduqHDGVVZWAfIYWozYBD2AAJuKjInGmNzWcyZt9gGqOhEhlO3xeNKJeKgOJnF7oVxBqmlpV0MLmSlGhzCjSXklli0dBCHV1h/U2pmxSnF3YI7bs1A==
- Arc-seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=EDQ8Ijd/uLfNRuQsSYuns5jMzzW8dHzWJIdy84wvL7X41Cgv/RwE0Lm+0DYRjXN3AG713VDvNK03EiDdfZeqrmuNH7ciz0m2LF+bHyGJ6aP+akMyCQIlPW3UoVMrO8nuQ3FWUUIPt09fMm/jCBLLtNqi7kcOqSdUpF/dSVpLKx7IS6hX+3JjqhdpK7TYidZNGSiVoN6lOaLhHlSapUcBlloytKxbTk58JpOwDHXwbXuY0mkXwOBoW1oqq5LmD9RYoY00ezXHPw4BSgg37UpPA8tIGbYE7bz41zWom/PzurNpwIK0hbbz+u03Vkxsg5v27LDzASjqdes1XCtwb7BmMQ==
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=fdhzs2010 AT hotmail.com; spf=Pass smtp.mailfrom=fdhzs2010 AT hotmail.com; spf=Pass smtp.helo=postmaster AT NAM10-DM6-obe.outbound.protection.outlook.com
- Ironport-hdrordr: A9a23:y/c4p6Ekh9u25v5CpLqFIpHXdLJyesId70hD6qkvc3Fom52j/fxGws5x6fatskdoZJhSo6H6BEDgewKryXcR2+Us1NiZLW3bUQeTTb2KqLGSugEIeBeOv9K1t50QFJSWYeeYZTcVsS+52njfLz9K+qjlzEncv5a6854bd3AJV0gP1WdEIzfeNnczaBhNBJI/GpbZzNFAvSCcdXMeadn+LmUZXsDYzue7367OUFojPVoK+QOOhTSn5PrRCB6DxCoTVDtJ3PML7XXFqQrk/a+u2svLgCM0llWjo6i/1bPau5Z+7f63+4YowwbX+0eVjbFaKvK/VGhcmpDu1L9lqqiOn/5qBbUI15qYRBDJnfKq4Xip7N8C0Q6Q9bajuwqQneXpADYhT8ZRj4NQdRXUr0ImodFnyapOm2aUrYBeAx/MlDn0o4GgbWAfqmOk5X451eIDhX1WVoUTLLdXsIwE5UtQVJMNBjjz5owrGPRnSMvc+PFVe1WHaG2xhBgb/DSGNk5DYituZ3JyzfB9/wIm7UyRlXFouvD3tk1whK7Ua/F/lpv5Dpg=
- Ironport-phdr: A9a23:KdQV0BegKWD0h2dVEG77Jan0lGM+g9nLVj580XLHo4xHfqnrxZn+JkuXvawr0AWRG9SCoK8bw8Pt8InYEVQa5piAtH1QOLdtbDQizfssogo7HcSeAlf6JvO5JwYzHcBFSUM3tyrjaRsdF8nxfUDdrWOv5jAOBBr/KRB1JuPoEYLOksi7ze+/94PPbwlSgDexfLx+IRW0oA7MqsQYnIxuJ7orxBDUuHVIYeNWxW1pJVKXgRnx49q78YBg/SpNpf8v7tZMXqrmcas2S7xYFykmPHsu5ML3rxnDTBCA6WUaX24LjxdHGQnF7BX9Xpfsriv3s/d21SeGMcHqS70/RDKv5LppRhD1kicKLz43/n/KhMxsgqxVoxyhqB5jzIHbe4yVLuZycr/HcN8GWWZMXsBcXDFBDIOmaIsPCvIMM+JCoInmoFsOqwa1CwuxBOjyzTJIiGL53a070uQ6Dw3KwBEsE84VvXTUq9X1KKISXvq0zKnM1znMc/RW2TLk5YXObxsuru2CU6hqfsrN1UkgCRnFjlOIpIHkIT+Y1fgBvmeF4uduSe+ilm4ppgB+rDWgyMkhiofEip4Rx13H9Ch13IU4KNO4RUB1ZdOqH5tduj2HO4V2X88vRXxjtig9yr0Do5G7fS4KxYwgxx7Cd/yHd4+I4hXgVOqLPTh4g3dldKqwhxaz7UigyvD8WdKu3FlWqSpFl8HAuWwN1xzX68iHUuFy/kO71jqV0QDc9P1ELVgplardKp4t26UwmYAJvkTZGi/5gkP2g7KMeko55Oel7fnsbLb+ppKEOIJ4lhvyP6AwlsClDuk0LxICU3WH9eiizLHv40z0TKlEg/Azj6XVrIvVKMUeq6O3HwNY3IMu5hSiADqj1dkUg2cLIVRYcxydlYfpIUvBIPXgAPe/nVuslDBryujeMLD9BZvBM2TPnK7vc7h66kNQ0Q0zwstB6J5ODbEBPe7zVVT2tNzFCB82Lha4w/79CNV6yoMRR36AArOYMKPVt1+E/OUvI/SQZI8Rvzb9LPsl6+Tygn8+nF8RZaip3Z0JZ3CkBvlrLFmVbWDoj9sfC2sHsRcyQPb3hFGeTzJff3OyULg95jE/BoKmF4DDRoW1jbyPwSi7HpxXZntYBlyQDHvka56JW/cLaCKOJ89uiD0EVby7R4A90hGusRf2y6B7IerM5i0YqZXj2cBp6O3UjBE+7CB7D8CA026WVGx0hWMJRzou3K9lu0B9y1GD0bJ5g/NCD9BT6elJAU8GMsuWxOtjTtv2Rwjpf9GTSV/gTM/sSWU6Sct0yNsTaW58Hc+jh1bNxXz5LaUSkumpDYcz9Or8wjClKcp92W2cjPB5p1khXs5GNGngjal6oVuAT7XVmlmUwv75PZ8X2zTAoT/rJY+mvEZEVQdxVePOWnVNPiM+Qvz54V/HRr6qT78gN1kYoSZjAo1jT4SxyHljGrLkMtmYZH+tkWCtAxrO3qmLcIfhZ2Qa2mPaFVQAlAcQu32BMFpnbho=
I would like to add that IMO, de Bruijn indices reflect the paper proof the most faithfully, among the three methods mentioned here and probably others. One very, if not the most, important problem of locally nameless representation and PHOAS is that they prevents you from counting the sizes or depths of derivations. Recall that, on paper, all proof trees are finite and their depths and sizes are countable. However, with locally nameless representation and PHOAS, you will find that the derivation of a universal quantification is over a meta-level dependent function. This function has larger cardinal than natural numbers so you will not be able to count the depth or size of it or even give it a upper bound. Just to give a more concrete example, with locally nameless representation, you might have the following premise in your derivation of universal quantification:
forall x, x \notin L -> G, x |- open t x : open P x
where L is some finite name store which an arbitrary name must avoid. Open is the operation in locally nameless representation which replaces the de Bruijn index 0 with x. Notice that the type of this premise does not prevent you from implementing this type as follows:
if x == “var1” then … else if x == “var2” then … else …
That is, even though it makes no sense to do so, this premise can do enough inspection of x, so that the resulting G, x |- open t x : open P x has a different size for every x. I feel that to make locally nameless representation as “faithful” as de Bruijn indices, some sort of extra naturality conditions should be required to prevent the proof body from doing inspection of variables like the one above. In this sense, PHOAS seems in a better situation but I haven’t work with PHOAS so I am not sure how far it will go.
Thanks, Jason Hu
From: Ian Shillito
Hi Wilayat, Pierre and Carlos,
Thank you all for your suggestions and references. I will have a look at them and figure out which one is the most convenient for me.
At least, what I gather from these suggestions is that there is no canonical way to formalize the syntax of FO on which the community unanimously agrees (if this phenomenon ever happens...).
Best, Ian From: coq-club-request AT inria.fr <coq-club-request AT inria.fr> on behalf of Carlos Olarte <carlos.olarte AT gmail.com>
Hi Ian,
|
- [Coq-Club] Formalization of the syntax of first-order logic: binders, Ian Shillito, 10/11/2021
- Re: [Coq-Club] Formalization of the syntax of first-order logic: binders, Wilayat Khan, 10/11/2021
- Re: [Coq-Club] Formalization of the syntax of first-order logic: binders, Pierre Courtieu, 10/11/2021
- Re: [Coq-Club] Formalization of the syntax of first-order logic: binders, Carlos Olarte, 10/11/2021
- Re: [Coq-Club] Formalization of the syntax of first-order logic: binders, Ian Shillito, 10/12/2021
- RE: [Coq-Club] Formalization of the syntax of first-order logic: binders, Jason Hu, 10/12/2021
- RE: [Coq-Club] Formalization of the syntax of first-order logic: binders, Alan Schmitt, 10/12/2021
- Re: [Coq-Club] Formalization of the syntax of first-order logic: binders, Dominik Kirst, 10/12/2021
- Re: [Coq-Club] Formalization of the syntax of first-order logic: binders, Ian Shillito, 10/14/2021
- RE: [Coq-Club] Formalization of the syntax of first-order logic: binders, Alan Schmitt, 10/12/2021
- RE: [Coq-Club] Formalization of the syntax of first-order logic: binders, Jason Hu, 10/12/2021
- Re: [Coq-Club] Formalization of the syntax of first-order logic: binders, Ian Shillito, 10/12/2021
- Re: [Coq-Club] Formalization of the syntax of first-order logic: binders, Carlos Olarte, 10/11/2021
- Re: [Coq-Club] Formalization of the syntax of first-order logic: binders, Pierre Courtieu, 10/11/2021
- Re: [Coq-Club] Formalization of the syntax of first-order logic: binders, Wilayat Khan, 10/11/2021
Archive powered by MHonArc 2.6.19+.