Skip to Content.
Sympa Menu

coq-club - [Coq-Club] applying at the same time two hypothesis to solve a goal.

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] applying at the same time two hypothesis to solve a goal.


chronological Thread 
  • From: "Theodoros G. Tsokos" <T.Tsokos AT cs.bham.ac.uk>
  • To: coq-club AT pauillac.inria.fr
  • Subject: [Coq-Club] applying at the same time two hypothesis to solve a goal.
  • Date: Wed, 09 Apr 2008 16:16:55 +0100
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Dear all,

Apologies for that possible trivial question and for the possible non appropriate for the question subject.

I'll try to describe a problem I'm addressing lately. I won't write down the entire model, just a brief description of it. I hope it's enough, otherwise I'll write down more information in a future email. I wouldn't like to tire you with much code, that's why I'm trying it in that way.

Assuming I want to solve the following goal in a Lemma:

H1: f a1 -> f v1
H2: f a2 -> f v2
============
f (a1+ a2) -> f (v1+v2)

Where in the inductive definition of f, one of its constructors is:

Inductive f :  ... :=
...
| ...
| Cx : forall x y, f x -> f y -> f(x+y)
| ...
.

I really can't think of a way of using the constructor Cx as a Hint to solve the goal, which I reckon should be the way of addressing the problem. Any help please?

Thanks a lot in advance,
Theo.

--
| Theodoros G. Tsokos                                      |
http://www.cs.bham.ac.uk/~txt                            ;|
| School of Computer Science, The University of Birmingham |
| Edgbaston, Birmingham, B15 2TT, United Kingdom           |
| -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- |
| "The freedom of speech includes the freedom to shut up"  |
| -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- |
| "Democracy: the freedom to say whatever one wants and    |
| the capital to implement whatever it wants"              |
--







Archive powered by MhonArc 2.6.16.

Top of Page