Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] applying at the same time two hypothesis to solve a goal.

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] applying at the same time two hypothesis to solve a goal.


chronological Thread 
  • From: Adam Chlipala <adamc AT cs.berkeley.edu>
  • To: "Theodoros G. Tsokos" <T.Tsokos AT cs.bham.ac.uk>
  • Cc: coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club] applying at the same time two hypothesis to solve a goal.
  • Date: Wed, 09 Apr 2008 11:27:32 -0400
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

I don't think your lemma is true, going on just the information you've provided so far. While you could prove the goal [f (v1 + v2)] from [f v1] and [f v2], the hypothesis of [f (a1 + a2)] does not imply [f a1] or [f a2], because a natural number can be decomposed into multiple distinct sums. (And this is ignoring the potential further confounding influences of the [f] constructors you haven't included.)

Theodoros G. Tsokos wrote:
Assuming I want to solve the following goal in a Lemma:

H1: f a1 -> f v1
H2: f a2 -> f v2
============
f (a1+ a2) -> f (v1+v2)

Where in the inductive definition of f, one of its constructors is:

Inductive f :  ... :=
...
| ...
| Cx : forall x y, f x -> f y -> f(x+y)
| ...
.





Archive powered by MhonArc 2.6.16.

Top of Page