Skip to Content.
Sympa Menu

coq-club - [Coq-Club] families of sets extension

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] families of sets extension


chronological Thread 
  • From: anabelcesar <anabelcesar AT gmail.com>
  • To: coq-club AT pauillac.inria.fr
  • Subject: [Coq-Club] families of sets extension
  • Date: Mon, 30 Mar 2009 13:26:51 +0200
  • Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:date:message-id:subject:from:to:content-type; b=JPLYPzD/IePZBeHCxqDASDglueCkGOQfjOQENZmCH0puW3tnoHvPNGN9IOPn2FO/mI Ym9k1uGn+BagR80R/+I1eS/5XFdHh/JDb0NSwOID+/EbAVT/Qcv9iQwHFLNp/4U+Ynv7 6exZHwHq4SuoEfH/4uXQDth5dhGeHSWG7aJGU=
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Dear Coq users,

I am working with families of sets F:nat -> Set and I need to
extend them using a particular set as the first set of the family.
In the example below, I use "unit".

Then, If we iterate the construction n times, the n first sets should be unit
(and in particular the set n in the family). But I do not know how to prove this
(probably easy) Lemma.

Any help is appreciated.

Cesar


----------------------------------------------------------------- 
Section Function_extension.

Variable F:nat-> Set.


Definition unit_ext: nat -> Set:=
fun n : nat => match n with
               | 0 => unit
               | S n0 => F n0
               end.
End Function_extension.

Fixpoint iterated_unit_ext ( F:nat-> Set)(n:nat){struct n}:=
 match n with
               | 0 => unit_ext F
               | S n => iterated_unit_ext (unit_ext F) n
               end.

Lemma aa:forall (n:nat) (F:nat -> Set), iterated_unit_ext  F  n n  = unit.
Proof.

------------------------------------------------------------------





Archive powered by MhonArc 2.6.16.

Top of Page