coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: anabelcesar <anabelcesar AT gmail.com>
- To: coq-club AT pauillac.inria.fr
- Subject: [Coq-Club] families of sets extension
- Date: Mon, 30 Mar 2009 13:26:51 +0200
- Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:date:message-id:subject:from:to:content-type; b=JPLYPzD/IePZBeHCxqDASDglueCkGOQfjOQENZmCH0puW3tnoHvPNGN9IOPn2FO/mI Ym9k1uGn+BagR80R/+I1eS/5XFdHh/JDb0NSwOID+/EbAVT/Qcv9iQwHFLNp/4U+Ynv7 6exZHwHq4SuoEfH/4uXQDth5dhGeHSWG7aJGU=
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Dear Coq users,
I am working with families of sets F:nat -> Set and I need to
extend them using a particular set as the first set of the family.
In the example below, I use "unit".
Then, If we iterate the construction n times, the n first sets should be unit
(and in particular the set n in the family). But I do not know how to prove this
(probably easy) Lemma.
Any help is appreciated.
Cesar
-----------------------------------------------------------------
Section Function_extension.
Variable F:nat-> Set.
Definition unit_ext: nat -> Set:=
fun n : nat => match n with
| 0 => unit
| S n0 => F n0
end.
End Function_extension.
Fixpoint iterated_unit_ext ( F:nat-> Set)(n:nat){struct n}:=
match n with
| 0 => unit_ext F
| S n => iterated_unit_ext (unit_ext F) n
end.
Lemma aa:forall (n:nat) (F:nat -> Set), iterated_unit_ext F n n = unit.
Proof.
------------------------------------------------------------------
- [Coq-Club] families of sets extension, anabelcesar
- Re: [Coq-Club] families of sets extension,
Julien Forest
- Re: [Coq-Club] families of sets extension, anabelcesar
- Re: [Coq-Club] families of sets extension,
Stéphane Lescuyer
- Re: [Coq-Club] families of sets extension,
Edsko de Vries
- Re: [Coq-Club] families of sets extension,
Stéphane Lescuyer
- Re: [Coq-Club] families of sets extension,
James McKinna
- Re: [Coq-Club] families of sets extension, Sean Wilson
- Re: [Coq-Club] families of sets extension,
James McKinna
- Re: [Coq-Club] families of sets extension,
Stéphane Lescuyer
- Re: [Coq-Club] families of sets extension,
Edsko de Vries
- <Possible follow-ups>
- Re: [Coq-Club] families of sets extension, Sean Wilson
- Re: [Coq-Club] families of sets extension,
Julien Forest
Archive powered by MhonArc 2.6.16.