Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] an inductive types question

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] an inductive types question


chronological Thread 
  • From: Adam Chlipala <adamc AT hcoop.net>
  • To: Vladimir Voevodsky <vladimir AT ias.edu>
  • Cc: Coq Club <coq-club AT pauillac.inria.fr>
  • Subject: Re: [Coq-Club] an inductive types question
  • Date: Sat, 10 Oct 2009 17:42:11 -0400
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Vladimir Voevodsky wrote:
Is there a way in Coq to make definitions such as:

Inductive I1 : Type := x0 : I1 | x1 : I1 | i : eq x0 x1 .

or

Inductive Impl : Type := P1: Prop | P2: Prop | impl: P1 -> P2 .

Neither of these fits the spirit of inductive definitions. In each example, you might want to assert the final "constructor" as an [Axiom] instead, but there is almost always a better way to do such things. We can't comment on the better way(s) for your specific situation without more background.





Archive powered by MhonArc 2.6.16.

Top of Page