Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Where is the set theory?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Where is the set theory?


chronological Thread 
  • From: roconnor AT theorem.ca
  • To: Andrej Bauer <andrej.bauer AT andrej.com>
  • Cc: Victor Porton <porton AT narod.ru>, Coq <coq-club AT inria.fr>
  • Subject: Re: [Coq-Club] Where is the set theory?
  • Date: Tue, 8 Nov 2011 15:44:16 -0500 (EST)

Hi Andrej,

On Thu, 3 Nov 2011, Andrej Bauer wrote:

If you know how to express the fact that S and T have the same
supremum without using any quantifiers, please let me know.

Section 6 from my paper "Classical mathematics for a constructive world" <http://dx.doi.org/10.1017/S0960129511000132> defines a "classical partial value monad" which is designed exactly for this purpose of defining these classical functions in constructive type theory. Of course, the monad hides an existential quantifier, but it isn't exposed to the user. The user should be able to write functions with just the standard overhead of working with a commutative monad.

The monad is defined for a stable setoid Y as

P Y = { YP : Y --> Prop | (forall y : Y, ~ ~ (YP y) -> YP y) /\
                          (forall y1 y2 : Y, YP y1 -> YP y2 -> y1 == y2) }

And supremum can be given the type supremum :: (Y --> Prop) --> P Y
where --> is notation for a respectful funciton and Prop is the setoid of propositions under with logical equivalence.

--
Russell O'Connor                                      <http://r6.ca/>
``All talk about `theft,''' the general counsel of the American Graphophone
Company wrote, ``is the merest claptrap, for there exists no property in
ideas musical, literary or artistic, except as defined by statute.''



Archive powered by MhonArc 2.6.16.

Top of Page