Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Positivity and Elimination Principle

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Positivity and Elimination Principle


chronological Thread 
  • From: Dan Doel <dan.doel AT gmail.com>
  • To: Daniel Schepler <dschepler AT gmail.com>
  • Cc: coq-club AT inria.fr, Andreas Abel <andreas.abel AT ifi.lmu.de>, Adam Chlipala <adamc AT csail.mit.edu>, AUGER C�dric <Cedric.Auger AT lri.fr>
  • Subject: Re: [Coq-Club] Positivity and Elimination Principle
  • Date: Fri, 20 Jan 2012 23:45:50 -0500

On Fri, Jan 20, 2012 at 11:24 PM, Daniel Schepler 
<dschepler AT gmail.com>
 wrote:
> Ah, OK.  Another issue is that if you go back and replace Prop with bool in
> the original example, then injectivity of a map ((T->bool)->bool) -> T is
> inconsistent with the axiom "classic_dec : forall P:Prop, {P} + {~P}".  The
> proof is pretty much the same, where you use classic_dec to convert certain
> Props to bools.
>
> I don't know whether that would be much of an issue in Agda; but in Coq, I
> wouldn't want to lose the ability to formalize classical mathematics (and 
> have
> the results be meaningful instead of just following from an inconsistency).
> But then, I guess it's fairly well-known that classic mathematics is
> inconsistent with an impredicative type system, at least if you want to be
> able to have "constructor discrimination".

You're right. It's probably not a viable option for Coq.

I'd still be interested to see a type theory that included them,
accepting the anti-classical implications and whatnot. I think it
could be useful from a programming perspective. I have a contrived
example or two that uses them.




Archive powered by MhonArc 2.6.16.

Top of Page