Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Positivity and Elimination Principle

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Positivity and Elimination Principle


chronological Thread 
  • From: Andreas Abel <andreas.abel AT ifi.lmu.de>
  • To: Daniel Schepler <dschepler AT gmail.com>
  • Cc: Dan Doel <dan.doel AT gmail.com>, coq-club AT inria.fr, Adam Chlipala <adamc AT csail.mit.edu>, AUGER C�dric <Cedric.Auger AT lri.fr>, Benjamin Werner <benjamin.werner AT inria.fr>, Gyesik Lee <gslee AT hknu.ac.kr>, Hugo Herbelin <Hugo.Herbelin AT inria.fr>
  • Subject: Re: [Coq-Club] Positivity and Elimination Principle
  • Date: Sat, 21 Jan 2012 10:47:01 +0100

Good, so you quickly reconstructed the counterexample that I new to exist somewhere!

The additional ingredient to non-strict positivity you needed is a second universe above the impredicative one, and you have to place the non-strictly positive definition into that second higher universe.

However, this does not exclude non-strictly positive types in Prop.

* Since clever people like Chung-Kil can get them through the back door anyway, why not allow them outright?

* I'd bet that the proof-irrelevant set-theoretical model of Werner and Lee does support non-strictly positive types in Prop.

* I conjecture realizability models also support them.

Cheers,
Andreas

On 20.01.12 10:55 PM, Daniel Schepler wrote:
Actually, I guess that also gives an example of a positive, but not
strictly positive, inductive definition which would lead to a contradiction:

Inductive X : Type :=
| X_const : ((X->Prop)->Prop) -> X.

If Coq allowed that definition, then X_const, being a constructor, would
automatically be injective, leading to the contradiction from my
previous message.  (Plus, I'm not at all sure what X_rect or X_ind would
look like in that case.)
--
Daniel Schepler


--
Andreas Abel  <><      Du bist der geliebte Mensch.

Theoretical Computer Science, University of Munich
Oettingenstr. 67, D-80538 Munich, GERMANY

andreas.abel AT ifi.lmu.de
http://www2.tcs.ifi.lmu.de/~abel/



Archive powered by MhonArc 2.6.16.

Top of Page