Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Extensional Equality for Function Types

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Extensional Equality for Function Types


chronological Thread 
  • From: Frederic Blanqui <Frederic.Blanqui AT loria.fr>
  • To: Jason Hickey <jyh AT cs.caltech.edu>
  • Cc: coq-club AT pauillac.inria.fr, roconnor AT theorem.ca, ctm AT cs.nott.ac.uk, JOUANNAUD Jean-Pierre <jouannaud AT lix.polytechnique.fr>, strub AT lix.polytechnique.fr
  • Subject: Re: [Coq-Club] Extensional Equality for Function Types
  • Date: Tue, 15 Feb 2005 13:30:49 +0100 (CET)
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

On Mon, 14 Feb 2005, Jason Hickey wrote:

Conor McBride wrote:

We should be careful to distinguish extensionality as an axiom, from the
thing which makes 'extensional type theory' extensional: the equality
reflection rule. Equality reflection says that two provably equal things
become definitionally equal.

   Gamma |- q : x =_T y          (q proves proposition 'x equals y in T')
 ------------------------
   Gamma |- x === y : T          (x judgmentally equal to y in T)

It is such a wonderfully strong principle, but the price is so high! In one broad stroke, equality reflection requires the non-observability of
extensionally equal values in all contexts.  One compromise we use is to
assume that equality reflection only holds on types where the elements
have canonical representatives.  This includes only unit, bool, int, and
sums and products of those types.
[...]
The Coq theory gains a lot from nice properties like SN, decidable type checking, canonical values, and more. It would be unfortunate if these properties were compromised by extensional function equality--and probably not worth adding if so.

in a recent work (see http://www.loria.fr/~blanqui/papers/shostak.pdf), we study a restricted form of equality reflection that preserves all these good properties in the calculus of constructions. we restrict equality reflection to the judgements (x =_T y) that are provable, in the first-order theory of equality, from the algebraic equalities assumed in Gamma. this is decidable. we expect to extend this to richer theories.




Archive powered by MhonArc 2.6.16.

Top of Page