Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] FSet Extensionality Not defined

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] FSet Extensionality Not defined


chronological Thread 
  • From: "M. Scott Doerrie" <mdoerri AT cs.jhu.edu>
  • To: St�phane Lescuyer <stephane.lescuyer AT inria.fr>
  • Cc: coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club] FSet Extensionality Not defined
  • Date: Wed, 18 Mar 2009 15:04:50 -0400
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

You are correct that I've been assuming FSetLists as my structure. I had not considered the AVL structure, for which this wouldn't hold.
I do not understand where proof-irrelevance would enter for FSetLists. I had thought that with identical representations, the proofs of sorting would also be identical. What did I miss here?

Scott Doerrie

Stéphane Lescuyer wrote:
Hi, even with an UsualOrderedType, extensionality is not true in
general for FSets since it depends on the actual representation : two
different AVLs can represent the same set for instance. Even with
sorted lists, where you might expect the property to be true, it would
require the proof-irrelevance of the proof that the list is sorted.

S.L.

On Wed, Mar 18, 2009 at 7:20 PM, M. Scott Doerrie 
<mdoerri AT cs.jhu.edu>
 wrote:
I would really like to have an axiom-free method of constructing Ensembles
from FSets.  However, I can't find any definition for
Extensionality_Ensembles in FSetToFiniteSet in any version of the Coq
standard library.  I believe this axiom would be derivable if creating FSets
from UsualOrderedTypes, yet I can not locate it.  Did I miss something?  Is
this not possible?

Scott Doerrie

--------------------------------------------------------
Bug reports: http://logical.saclay.inria.fr/coq-bugs
Archives: http://pauillac.inria.fr/pipermail/coq-club
        http://pauillac.inria.fr/bin/wilma/coq-club
Info: http://pauillac.inria.fr/mailman/listinfo/coq-club









Archive powered by MhonArc 2.6.16.

Top of Page