Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] case & inversion, Set & Prop

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] case & inversion, Set & Prop


chronological Thread 
  • From: Keiko Nakata <keiko AT kurims.kyoto-u.ac.jp>
  • To: adamc AT hcoop.net
  • Cc: coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club] case & inversion, Set & Prop
  • Date: Thu, 06 Aug 2009 22:34:18 +0900 (JST)
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Thank you for the prompt and instructive answer. 
But my understanding is still partial :(

The following code works fine: 

Inductive list: Prop :=
| nil: nat -> list.

Inductive list_eq: list -> list -> Prop :=
| nil_eq: forall n, list_eq (nil n) (nil n).

Lemma invert_again: forall l0 l1, list_eq l0 l1 -> l1 = l0.
Proof.
inversion 1; reflexivity.
Qed.

I do not know where is the crucial difference in proof terms of your "invert"
and my "invert_again".

Best,
Keiko





Archive powered by MhonArc 2.6.16.

Top of Page