coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Keiko Nakata <keiko AT kurims.kyoto-u.ac.jp>
- To: adamc AT hcoop.net
- Cc: coq-club AT pauillac.inria.fr
- Subject: Re: [Coq-Club] case & inversion, Set & Prop
- Date: Thu, 06 Aug 2009 22:34:18 +0900 (JST)
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Thank you for the prompt and instructive answer.
But my understanding is still partial :(
The following code works fine:
Inductive list: Prop :=
| nil: nat -> list.
Inductive list_eq: list -> list -> Prop :=
| nil_eq: forall n, list_eq (nil n) (nil n).
Lemma invert_again: forall l0 l1, list_eq l0 l1 -> l1 = l0.
Proof.
inversion 1; reflexivity.
Qed.
I do not know where is the crucial difference in proof terms of your "invert"
and my "invert_again".
Best,
Keiko
- [Coq-Club] case & inversion, Set & Prop, Keiko Nakata
- Re: [Coq-Club] case & inversion, Set & Prop,
Adam Chlipala
- Re: [Coq-Club] case & inversion, Set & Prop, Keiko Nakata
- Re: [Coq-Club] case & inversion, Set & Prop, Adam Chlipala
- Re: [Coq-Club] case & inversion, Set & Prop, Keiko Nakata
- Re: [Coq-Club] case & inversion, Set & Prop,
Taral
- Re: [Coq-Club] case & inversion, Set & Prop,
Keiko Nakata
- Re: [Coq-Club] case & inversion, Set & Prop,
Adam Chlipala
- Re: [Coq-Club] case & inversion, Set & Prop,
Keiko Nakata
- Re: [Coq-Club] case & inversion, Set & Prop,
Adam Chlipala
- Re: [Coq-Club] case & inversion, Set & Prop,
Keiko Nakata
- Re: [Coq-Club] case & inversion, Set & Prop, Adam Chlipala
- Re: [Coq-Club] case & inversion, Set & Prop,
Keiko Nakata
- Re: [Coq-Club] case & inversion, Set & Prop,
Adam Chlipala
- Re: [Coq-Club] case & inversion, Set & Prop, Keiko Nakata
- Re: [Coq-Club] case & inversion, Set & Prop,
Keiko Nakata
- Re: [Coq-Club] case & inversion, Set & Prop,
Adam Chlipala
- Re: [Coq-Club] case & inversion, Set & Prop,
Keiko Nakata
- Re: [Coq-Club] case & inversion, Set & Prop,
Adam Chlipala
Archive powered by MhonArc 2.6.16.