Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] case & inversion, Set & Prop

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] case & inversion, Set & Prop


chronological Thread 
  • From: Adam Chlipala <adamc AT hcoop.net>
  • To: Keiko Nakata <keiko AT kurims.kyoto-u.ac.jp>
  • Cc: coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club] case & inversion, Set & Prop
  • Date: Fri, 07 Aug 2009 14:48:59 -0400
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Keiko Nakata wrote:
From: Adam Chlipala 
<adamc AT hcoop.net>
Subject: Re: [Coq-Club] case & inversion, Set & Prop
Date: Fri, 07 Aug 2009 13:49:42 -0400

Keiko Nakata wrote:
As you know, I cannot prove a goal of the form "exists x, P" by coinduction.
So it sometimes happens that I need to construct x manually, then prove that
x indeed satisfies P by coinduction.
You might get some mileage out of defining a new co-inductive judgment that combines [exists] and [P].

Unfortunately I have not come up with such a mileage :(
But indeed when I got stuck by this problem, I was curious to know how one could devise such a new co-inductive judgment combining [exists] and [P]. And I am still curious about!

I've done some work in the past that applied this kind of judgment in a Hoare logic style. If you can post a small code example demonstrating the essence of the proof rules that you're working with, then I might be able to suggest a formulation.





Archive powered by MhonArc 2.6.16.

Top of Page