Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Can I use this nonempty inductive type in a fixpoint (without declaring variable that will lead to an axiom) ?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Can I use this nonempty inductive type in a fixpoint (without declaring variable that will lead to an axiom) ?


chronological Thread 
  • From: Adam Chlipala <adam AT chlipala.net>
  • To: Georgi Guninski <guninski AT guninski.com>
  • Cc: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Can I use this nonempty inductive type in a fixpoint (without declaring variable that will lead to an axiom) ?
  • Date: Thu, 19 May 2011 11:41:55 -0400

Georgi Guninski wrote:
what is the formal definition of "empty"

A type [T] is empty if you can prove [T -> False].

Lemma l1: anything.
Proof.
constructor 1.
(* this passes without plug-ins *)

So would running [idtac]. The problem is that you haven't finished the proof. :P



Archive powered by MhonArc 2.6.16.

Top of Page