Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Can I use this nonempty inductive type in a fixpoint (without declaring variable that will lead to an axiom) ?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Can I use this nonempty inductive type in a fixpoint (without declaring variable that will lead to an axiom) ?


chronological Thread 
  • From: Lauri Alanko <la AT iki.fi>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Can I use this nonempty inductive type in a fixpoint (without declaring variable that will lead to an axiom) ?
  • Date: Thu, 19 May 2011 19:09:24 +0300

On Thu, May 19, 2011 at 11:41:55AM -0400, Adam Chlipala wrote:
> Georgi Guninski wrote:
> >what is the formal definition of "empty"
> 
> A type [T] is empty if you can prove [T -> False].

Sorry to nitpick, but the above might be a bit confusing to someone
unfamiliar with the concept. Surely the formal (intensional)
definition of "empty" is that a type [T] is empty if there are no
closed terms [t] such that [t : T]?  Only due to the consistency of
Coq is this (extensionally) equivalent with your definition above.


Lauri



Archive powered by MhonArc 2.6.16.

Top of Page