Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] an inductive types question (2)

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] an inductive types question (2)


chronological Thread 
  • From: muad <muad.dib.space AT gmail.com>
  • To: coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club] an inductive types question (2)
  • Date: Tue, 20 Oct 2009 10:35:39 -0700 (PDT)
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

> Is it also true that any closed term of type nat reduces to a term of the
form S ... S O

This is the definition of canonicity which I believe Coq has, although I am
never sure about anything when coinductives are involved (Of course axioms
and opaque terms can stop reduction).


> Does it imply that in the empty context it is impossible to define a
> function (nat -> nat) -> nat which maps f to its minimal value?

The existence of such a function would let you produce a mu-minimization
operator and that contradicts the strong normalization of Coq, so lets say
that it's not possible. I think that if you defined the term and its
property as an axiom: You still have a consistent theory though.
-- 
View this message in context: 
http://www.nabble.com/A-not-so-FSet-specific-question-about-destruction-tp25958672p25979327.html
Sent from the Coq mailing list archive at Nabble.com.





Archive powered by MhonArc 2.6.16.

Top of Page